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ABSTRACTABSTRACTABSTRACTABSTRACT
In this paper, we propose to cluster and model network-level traffic states based on a
geometrical weighted similarity measure of network-level traffic states and locality
preservative non-negative matrix factorization. The geometrical weighted similarity
measure makes use of correlation between neighboring roads to describe spatial
configurations of global traffic patterns. Based on it, we project original
high-dimensional network-level traffic information into a feature space of much less
dimensionality through the matrix factorization method. With the obtained
low-dimensional representation of global traffic information, we can describe global
traffic patterns and the evolution of global traffic states in a flexible way. The
experiments prove validity of our method for the case of large-scale traffic network.

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Most of previous studies on intelligent traffic focus on mining temporal patterns of
traffic data measured on individual links [1][2][3]. These works only analyze
temporal properties of local link level traffic states. In fact, in a typical urban traffic
scenario, traffic states of one link are correlated with neighboring areas.
Network-level traffic states can be regarded as complementary knowledge and
constraints in predicting or analyzing link level traffic patterns. Therefore, in recent
years, with improvement of intelligent transportation systems, it becomes necessary to
unveil global traffic patterns at network level. Global traffic information provides
overall descriptions of spatial configurations of traffic states over the whole road
network, which can improve performances of traffic guidance or control systems [3].

In large-scale traffic networks, like urban traffic systems, network level traffic
information is often represented in a high-dimensional feature space, which makes it
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difficult to extract characteristics of global traffic states. In our work, we firstly adopt
a geometrical weighted distance to evaluate similarity between network-level traffic
patterns, which is described in the second section. Then, we make use of a matrix
factorization method with a topological reguliarization term to obtain a
low-dimensional representation model of global traffic states, as described in the third
section. In a further step, we perform clustering of global traffic states based on the
learned low dimensional representation, in order to extract typical spatial patterns of
network-level traffic states. In the final part of the paper, we present clustering
structures of network-level traffic patterns with respect to a large-scale link network
and make conclusions of the whole paper.

GLOBALGLOBALGLOBALGLOBALTRAFFICTRAFFICTRAFFICTRAFFIC STATUSSTATUSSTATUSSTATUS SIMILARITYSIMILARITYSIMILARITYSIMILARITYMEASUREMEASUREMEASUREMEASURE
A network level traffic state is defined by a sequence of link level traffic states with
respect to each individual link in the road network, which is normally represented in a
n-dimensional vector, with n being the number of links in the network. Besides simply
concatenating all link level traffic information into the high dimensional
representation, network-level traffic states also contain spatial configurations of link
level traffic states in the network, which form different global traffic state patterns. In
a typical traffic network, the traffic state of one specific link is closely correlated with
its up-stream or down-stream nearest neighbors in most cases. For example, in

Figure.1, the links
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m are up-stream and down-steam nearest neighbors of

the link i respectively. Assuming link i fell into a heavy traffic jam, its neighboring

links
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j and

  

di
m are more likely to be congested with vehicles than those which are

located far from the link i and vice versa. Motivated by the property, we propose to
adopt a weighted fusion scheme among traffic states with respect to geometrical
neighborhoods of links during evaluating similarity between network level traffic
states observed at different time. As we can see in Figure.1, we firstly calculate
differences between traffic states of corresponding links. For each link i, we then
obtain a weighted sum of the link-wise difference values with respect to the link i and
its up-stream and down-stream neighbors, which is defined to be local variation

  

v i of
traffic states around the current link, as denoted in Figure.1 and Eq.1:
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a is the link-wise difference between traffic states of the corresponding link.
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w i is the weights attached to up-stream neighbors, down-stream neighbors and
the current link i respectively. After that, we map the L1 norm of {

  

v i} into [0, 1] using
a Gaussian kernel in Eq.2 as the final similarity measure between two network-level
traffic states:
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To normalize range of the weighted sum, the sum of all weights is required to be 1.
The weight

  

w icorresponding to the link i should be the largest one. Weights of the
neighboring links can be designed to be proportional to degrees of traffic state
correlation between one specific neighboring link and the current link i. In this paper,
we just treat all neighboring links are of equal importance. Therefore, all neighboring
links take the same weight value. By performing weighted fusion among local
neighborhoods in the network, the derived similarity measure not only represents
traffic state variations between corresponding links but also indicates the spatial
correlations between local neighborhoods.

Figure.1 Geometrical weighted similarity measure
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OFOFOFOFNETWORK-LEVELNETWORK-LEVELNETWORK-LEVELNETWORK-LEVELTRAFFICTRAFFICTRAFFICTRAFFIC STATUSSTATUSSTATUSSTATUS
Dimensionality of network-level traffic status representation is directly proportional
to the number of links in the network. Given a large-scale network, which is common
in applications of urban traffic control, the resultant high-dimensional traffic state
representation is difficult to store or use for traffic prediction / classification due to the
curse of dimensionality. To attack this issue, we propose to use locality preserving
non-negative matrix factorization (LPNMF) [4][5] to obtain low-dimensional
representation of global traffic states. Assuming that k samples of n-dimensional
global traffic states are stored as n*k matrix X, LPNMF factorize X into the
non-negative n*s matrix M and s*k matrix VT, which minimizes the following
objective function:
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The first term is the Frobenius reconstruction error with respect to M and V. Each
sample is approximated by a linear combination of the columns of M, weighted by the
rows of V. Therefore, M can be regarded as containing a learned basis of the global
traffic states, while V are s-dimensional representations of original samples in the



given basis. s is set to be much less than the original dimensionality n most of time.
Therefore, we actually obtain a much lower dimensional representation of
network-level traffic state after factorization, which removes redundancy in the
original high-dimensional space and makes it flexible to implement statistical analysis
on the manifold V. In contrast with SVD decomposition, derived manifold space is not
necessarily orthogonal in NMF. It is also required that each data sample takes positive
coordinates in the low-dimensional feature space. The above two properties makes
NMF more suitable to describe the latent distribution structures, especially when
overlap exists among different clusters of data samples. In the second term of the
object function, L is called Graph Laplacian [6], defined as D-W. In the matrix W,

  

w ij is the pair-wise geometrical weighted similarity measure matrix between the i-th

and j-th k global traffic state sample. Due to symmetry of the distance measure, W is
also a symmetric matrix. D is a diagonal matrix whose entries are column sums of W,
defined as Eq.4:
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By adding the Graph Laplacian based constraints, the obtained low-dimensional
representation V are calibrated to have similar topological structures as original

samples X, which means that two close samples

  

x i and

  

x j should also be close in

the low-dimensional manifold V. With this property, we can analyze global traffic
states easily in the low-dimensional manifold V instead without loss of intrinsic data
distribution of original samples X.

Each element

  

v ij of matrix V represents to which degree the i-th original sample is

associated with the j-th expanding basis in matrix M. If the i-th sample could be

represented solely using the j-th basis, then

  

v ij will take the largest value in the i-th

row of V [7]. Therefore, we simply use V to determine the cluster labels of the
network-level traffic states. For each

  

x i, we examine the i-th row of V and assign xi
to the j-th cluster,

  

j = arg max
j

vij . Simply as it is, we can still find out the intrinsic

distributional properties based on the NMF factorization.

EXPERIMENTALEXPERIMENTALEXPERIMENTALEXPERIMENTALRESULTSRESULTSRESULTSRESULTS

ExperimentalExperimentalExperimentalExperimental settingssettingssettingssettings
To verify validity of the proposed method in clustering and modeling network-level
traffic states, we firstly simulate real traffic scenes of the large-scale traffic network of
Paris and its suburb regions using Metropolis [8], in order to generate a benchmark
traffic database. Metropolis is a planning software [8] that is designed to model



transportation systems. It contains a complete environment to handle dynamic
simulations of daily traffic in one specific traffic network, which allows the user to
study impacts of transportation management policies in a large-scale urban traffic
network in a time-dependent manner. The built traffic database is composed by 4660
road intersections and 13627 links in the network, as we can see in the Figure.2. Each
simulated traffic scene is generated to cover 8 hours of traffic data observations,
including congestion in morning rush hours. Different traffic situations are obtained
by adding random events and fluctuation in the O-D matrix (Origin-Destination) and
capacity of network flow. There are totally 108 simulated traffic scenarios in our
benchmark data set. Each one contains 48 time steps, corresponding to 15-minute bins
over which the network traffic flow are aggregated. To represent traffic states, we
propose to use traffic index [9][10] in each link at a specific time, as in Eq.5.
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The denominator is the observed travel time in link

  

l at time

  

t , the nominator is the
free-flow travel time on this link. The smaller the traffic index is, the corresponding
link is more congested. To perform clustering analysis, we concatenate all
observations of traffic states into a 13627*5184 matrix. Each column corresponds to a
network-level traffic status obtained at each time step, which is a 13627-dimensional
vector. In the experiment, the number of centroids in clustering is set to be 3 and 5
respectively. For the convenience of visualization, we project all the column vectors
into 3-dimensional PCA space to illustrate structures of the obtained clusters.

Figure.2 Traffic network of Paris and suburb regions

ResultsResultsResultsResults ofofofof network-levelnetwork-levelnetwork-levelnetwork-level traffictraffictraffictraffic statestatestatestate clusteringclusteringclusteringclustering
In the 3D PCA space, as shown in three different viewpoints in Figure.3, the samples
corresponding to the free-flowing network-level states are concentrated within a small
region in the PCA space. By contrast, samples corresponding to network-level
congestion are distributed sparsely and far from the region of the free-flowing state.
Notably, with increasing degrees of traffic jam in the network, variations of



network-level traffic patterns become larger and larger. In fact, spatial configurations
of global traffic states keep the same if the whole network is free-flowing everywhere.
On the contrary, congestion occurred at different parts of the network change the
spatial configurations in different ways, which introduces variations in global traffic
patterns. Figure.4 illustrates the three clusters derived according to the proposed
clustering algorithm. The cluster labeled by blue legends represents that almost all
links are fluid in the network. Both red and dark green clusters indicate that traffic
jam occurs in the network. Figure.4 also shows spatial configurations of the most
congested network-level traffic states in each cluster, which have the least average
value of traffic indices among the corresponding clusters. They are used here as
representative exemplars of global traffic patterns contained in each cluster. In the
exemplars, red color is used to label jammed links whose traffic indices are less than a
specified threshold, while green color used for fluid links. It can be seen that the
exemplar of the red cluster contains much less busy links than the dark green one. It
denotes that network-level traffic states of the two clusters contain different degrees
of traffic congestions. Traffic network states in the green cluster contain much heavier
congestions. Furthermore, according to the exemplars, most of jammed links are
concentrate in the central region of the network. It denotes that most traffic congestion
occurs inside Paris. Suburb regions are free-flowing most of the times.

Figure.3 A three-views diagram of network-level traffic state representation in 3D
PCA space

By increasing the number of clustering centrioids to 5, we can find more detailed
structures of network-level traffic states, as shown in Figure.5. Figure.6 illustrates
exemplars of clusters following the same settings in Figure.4. In Figure.5, we
compare structures of the three clusters obtained above and those obtained after
increasing of clusters. The cluster corresponding to light traffic congestion, labeled by
red legends in Figure.4, is further split into two parts that are labeled by pink and
purple legends respectively in Figure.5. These two sub-clusters form elongated shapes
oriented to different directions in 3D-PCA space, which implies different distribution
settings of congestion in the network. Exemplars of these two clusters make the
difference more clear, as shown in the Figure.6(a) and (b). In the exemplar of the
sub-cluster labeled by pink legends, illustrated in Figure.6(a), busy links tend to be
more close to the central region than the exemplar of the sub-cluster labeled by purple
legends, as shown in Figure.6(b). Despite of similar degrees of network-level
congestion in both two exemplars, they indicate different spatial configurations of



traffic states in the network, which is consistent with the difference of orientations of
the two elongated sub-clusters.

Figure.4 Three clusters and exemplars of network-level traffic states

Figure.5 Division of clusters after increasing the number of clusters

Similar manner of split of the cluster can also be observed in the cluster
corresponding to heavy traffic congestion in Figure.4, labeled by dark green legends.
As we can see in Figure.5, this cluster is split to two sub-clusters labeled light green
and black legends. Due to large variations of spatial configurations of traffic
congestions, both of two sub-clusters have sparse structures in the 3D-PCA space.
However, they differ in degrees and spatial layout of network-level traffic congestion.
In Figure.6(c) and (d), we compare the exemplars of the two sub-clusters labeled by
black and light green legends in Figure.5 respectively. Generally, the exemplar in



Figure.6(d) contains more busy links. Furthermore, although the central region of the
network are highly congested in both exemplars, the area to which network-level
traffic congestion extend is more wide in the exemplar shown in the Figure.6(d),
especially in suburb regions. This implies a different setting of traffic scenarios during
simulation. Notably, we should notice that a small part of samples in the cluster of
light traffic congestion in Figure.4 are assigned into the sub-cluster labeled by black
legends in Figure.5. This may be partly caused by existence of sparsely distributed
data points that can’t get stable cluster assignment. More importantly, it is actually
smooth and continuous variations for network-level traffic status to evolve from the
free-flowing state to congestion. There is no clear boundary between the two states.
Therefore, cluster assignments are fuzzy for the samples of network-level status lying
around the boundary between the two clusters.

Figure.6 Exemplars of sub-clusters. (a) and (b) are exemplars of sub-clusters labeled
by pink and purple legends respectively. (c) and (d) are exemplars of sub-clusters
labeled by black and light green legends respectively.

In a typical traffic scenario simulation, the whole traffic network is free-flow at the
beginning. Subsequently, congestion emerges and becomes heavier and heavier until
reaching the peak of traffic jam. Finally, network-level traffic states recover gradually.
Therefore, network-level traffic states evolve in circular trajectories in the PCA space,
as shown in Figure.7. Along the trajectories, transitions from the free-flow state to
clusters corresponding to different network-level congestion patterns imply totally
different temporal traffic dynamics in the network. To make it intuitive, we select two
kinds of trajectories. Both start from the free-flowing state but achieve peaks of traffic
congestions in the clusters labeled by pink and black legends respectively. Each



trajectory is composed by observations of network-level traffic states at 48 time steps
in our benchmark database. For each time step, we take the average traffic index value
of all 13627 links in the network as a crude measure of global traffic state at the
current time. The lower it is, the heavier congestion occurs in the network. Within
each type of trajectories, we calculate average of the mean traffic index at each time
step of each trajectory, which results in a 48-D sequence of average values as a
general temporal dynamic pattern of global traffic states in the corresponding type of
trajectories. In Figure.8, we compare both dynamic patterns. Trajectories with its peak
of congestion located in the cluster labeled by black legends contain traffic jams with
longer durations and heavier congestion at their peak points. These two different
temporal evolution processe represent different settings of requirements and supplies
of traffic resources in the network. Crude as it is, the analysis gives us a hint that we
could analyse evolution of network-level traffic states based on the clustering results.

Figure.7 The evolution trajectory of network-level traffic states

Figure.8 Average temporal evolution patterns of the two sub-clusters

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION
In this paper, we propose a geometrical weighted similarity measure to evaluate both
link-level differences of traffic states and spatial constraints between traffic states of



neighboring incoming and out-coming links, which is important in describing spatial
configurations of network-level states. Using it, we adopt a topology preservative
non-negative matrix factoirzation method to obtain a low dimensional model of the
high-dimensional network-level traffic states, which keeps the similarity information
between original network-level traffic patterns. Thanks to the low-dimensional
representation, we can describe or predict the network-level traffic states much more
easily. In our work, we focus on clustering of the network-level states. Experimental
results not only indicate characteristics of spatial configuration patterns with respect
to traffic states in the whole network, but also denote promising applications of the
low dimensional representation and clustering results in describing temporal dynamic
patterns of the network-level traffic states.
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