A Separation Principle on Lie Groups

Abstract : For linear time-invariant systems, a separation principle holds: stable observer and stable state feedback can be designed for the time-invariant system, and the combined observer and feedback will be stable. For non-linear systems, a local separation principle holds around steady-states, as the linearized system is time-invariant. This paper addresses the issue of a non-linear separation principle on Lie groups. For invariant systems on Lie groups, we prove there exists a large set of (time-varying) trajectories around which the linearized observer-controler system is time-invariant, as soon as a symmetry-preserving observer is used. Thus a separation principle holds around those trajectories. The theory is illustrated by a mobile robot example, and the developed ideas are then extended to a class of Lagrangian mechanical systems on Lie groups described by Euler-Poincare equations.
Type de document :
Communication dans un congrès
IFAC world congress 2011, Aug 2011, Milano, Italy. pp.8004-8009, 2011, 〈10.3182/20110828-6-IT-1002.03353〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-00639006
Contributeur : François Chaplais <>
Soumis le : lundi 7 novembre 2011 - 18:57:34
Dernière modification le : lundi 12 novembre 2018 - 11:01:48
Document(s) archivé(s) le : mercredi 8 février 2012 - 02:36:26

Fichier

Separation_Principle.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Silvère Bonnabel, Philippe Martin, Pierre Rouchon, Erwan Salaün. A Separation Principle on Lie Groups. IFAC world congress 2011, Aug 2011, Milano, Italy. pp.8004-8009, 2011, 〈10.3182/20110828-6-IT-1002.03353〉. 〈hal-00639006〉

Partager

Métriques

Consultations de la notice

315

Téléchargements de fichiers

105