Handling a very large data set for determination of surface tension of chemical compounds using Quantitative Structure-Property Relationship strategy - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Chemical Engineering Science Année : 2011

Handling a very large data set for determination of surface tension of chemical compounds using Quantitative Structure-Property Relationship strategy

(1) , (2) , (1) , (2) , (2)
1
2
Ali Eslamimanesh
  • Fonction : Auteur
  • PersonId : 915940
Amir H. Mohammadi
  • Fonction : Auteur
  • PersonId : 915863
Dominique Richon
  • Fonction : Auteur
  • PersonId : 915941

Résumé

In this work, the Quantitative Structure-Property Relationship (QSPR) strategy is applied to represent/predict the surface tension of pure chemical compounds at (66.36-977.40). K temperature range. To propose a comprehensive, reliable, and predictive model, 18298 data belonging to experimental surface tension values of 1604 chemical compounds at different temperatures are studied. The Sequential Search mathematical method has been observed to be the only variable search method capable of selection of appropriate model parameters (molecular descriptors) regarding this large data set. To develop the final model, a three-layer Artificial Neural Network has been optimized using the Levenberg-Marquardt (LM) optimization strategy. Using this dedicated strategy, we obtain satisfactory results quantified by the following statistical parameters: absolute average deviations of the represented/predicted properties from existing experimental values: 3.8%, and squared correlation coefficient: 0.985.
Fichier non déposé

Dates et versions

hal-00651404 , version 1 (13-12-2011)

Identifiants

Citer

Farhad Gharagheizi, Ali Eslamimanesh, Behnam Tirandazi, Amir H. Mohammadi, Dominique Richon. Handling a very large data set for determination of surface tension of chemical compounds using Quantitative Structure-Property Relationship strategy. Chemical Engineering Science, 2011, 66 (21), pp.4991-5023. ⟨10.1016/j.ces.2011.06.052⟩. ⟨hal-00651404⟩
94 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More