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AVERAGING AND DETERMINISTIC OPTIMAL CONTROL*
F. CHAPLAISt

Abstract. Averaging is often used in ordinary differential equations when dealing with fast periodic
phenomena. It is shown here that it can be used efficiently in optimal control. As the period tends to zero,
a limit or “averaged” problem is defined. The open loop optimal control of the limit problem induces a
cost which is optimal up to the second order when evaluated through the original dynamics. The definition
of the averaged problem is then generalized to the nonperiodic case. It is shown that the Bellman function
of the original “fast” problem tends uniformly on any compact set to that of the averaged problem.

Key words. averaging, optimal control, time scales, perturbations in control, Hamilton-Jacobi equations
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Introduction: A perturbation approach. Averaging can be seen as part of the
perturbation theory of differential equations. Consider

) ‘;_’:=f5(x,t), x(0)=x,, x(1)eR", te[0, T].

Regular perturbations correspond to the situation when f° has a limit in C°(R" X
[0, T],R") as ¢ tends to zero. Singular perturbations [6] can be seen as f° having a
limit in L*(R"x[0, T],R"). Roughly speaking, averaging is the case when f* has a
limit in L*(R" x[0, T], R") in the weak topology. As an example, consider

dx t
(2) s (x, t, ;)

where f is periodic in the last variable. Define f°(x, t) = f(x, t, t/ £); clearly f° has no
limit either pointwise orin L?; yet f° tends to f° defined by f(x, t) = 1/w g f(x, t, 8) d6,
weakly in L%

It is well known [1] that the solution of (2) can be approximated by the solution
of

o) L_pp0. y0=x
with an error of order w, provided that f be regular enough. Solving (3) instead of
(2) is known as “averaging”.

What is good for differential equations is often good for optimal control. Regular
and singular perturbations have been extensively studied ([2], [6]). As far as averaging
is concerned, it has been studied in the context of partial differential equations [3] or
stochastic optimal control [5]. We present here some approximation results in deter-
ministic optimal control.

1. The periodic case.
1.1. The averaged problem. Let
f: R*XR?x[0, TIxR->R",
(x’ u’ t’ 0) _)f(x’ u’ t’ 0)’

* Received by the editors February 3, 1986; accepted for publication (in revised form) May 5, 1986.
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768 F. CHAPLAIS

L: R"xR?x[0, T]xR~>R,
(x, u’ t’ 0)_) L(x’ u’ t’ 0)’

with f and L periodic in 8 with a period w independent of x, u and ¢ (regularity will
be considered in § 1.2). Let U“? be a constraint domain and W* = {u € L*([0, T], R?),
u(t)e U* for almost every t} the set of admissible controls. We define the problem
(P®) as:

2 A(x0.u0.15), x0=x,

dt €
(4) (P°).

T t
MinimizeJ L(x(t), u(e), t, —) dt in W,
0 €

We define the associated problem P as follows:
v ={ve LX[0, T1x[0, w],R?), v(t, 0) € U a.e. (1, 0)},

?:l jwf(y(t), v(t,0),t0)do, y(0)=xo,
t w

5) ° e (P).
Minimize J ;J L(y(1), v(¢, 0),1,0)dé in Vel

0 0

Problem (4) can be seen as the perturbation of (5) by a fast oscillating input of null
average. Notice that if f is Lipschitz in x and measurable in u, ¢, 6, then, for v in V%,
the average f of f as defined in (5) is Lipschitz in x and measurable in . Hence, both
(4) and (5) have a unique solution over [0, T].

Remark 1. At first sight, it would seem reasonable to consider in (5) the averages
of f and L in 6 independently of u, that is, u being a constant vector in R” and not a
functionin L*([0, ], R?). This amounts to restricting V¢ to controls which are constant
over [0, w] at time t. As we shall see, this may lead to a severe loss of optimality when
e tends to 0. In short, it is necessary to have a feedback on the fast time 6. Consider
for instance the following problem: n=p =1, U’ =R, f(x, u, t, §) = —x + u sin (8) and
L(x, u, t, 0) =x*+(u?/6). If u is independent of 6, the average of f is equal to —x,
which is itself independent of u. Within this class of functions, the optimal cost for
(P°) is asymptotically equal to J(0), if J(u) denotes the cost of u in (P). J(0) is equal
to x3(1—e2T)/2.

Now use our definition of the averaged problem to compute a better control. Let
q be the solution of the Riccati equation of the averaged problem: dq/dt =3¢*+2q—1,
q(T)=0;then q(0)=(1—e~*")/(3+e™*7). Define z by dz/dt = —z(1+3q), z(0) = x(0);
z is the optimal trajectory for the averaged problem. Now use the open-loop control
u®(t)=—6q(t)z(t) sin (t/¢) in problem (P°). Then it is easy to see that x° driven by
u® in (4) is asymptotic to z. Hence the cost of u° in (P°) is asymptotic to L,T 2*(t) X
(1+34%(t)) dt. Thanks to the Riccati equation, the latter quantity is equal to g(0)x>,
which is smaller than J(0); thus for € small enough, u° is better than any “slow” control.

Notice that the same phenomenon can be observed in stochastic optimal control,
where it is well known that open-loop controls alone are not enough to ensure
optimality. In both cases this is due to the presence of averages w.r.t. the events or
fast time in the problem (the same can be said of the “‘ordinary,” “slow’’ time, of course).

Remark 2. Even though the controls of problem (P) are in an infinite dimensional
state, the minimum principle and dynamic programming apply; the important fact is
that the state is finite-dimensional. One also checks that the Bellman function is the
viscosity solution of the Hamilton-Jacobi-Bellman equation [7].
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Let f(x, v, t) denote the average of f and L the average of L. The adjoint state
equations for the problem (P) are:

dp_ _of" oL
dt axp ax’

and if v* is an optimal control for the problem (P), the minimum principle says that
v*(t,-) minimizes the Hamiltonian of (P), that is, p(¢)"f(x, v, t)+ L(x, v, t), with
respect to v in V*. This is equivalent to: v*(t, ) minimizes p(t)"f(x, v, ¢, 0)+
L(x, v, t, 8) with respect to v in U®, this for almost every 6. We see that the control
appears naturally as a feedback on the fast time (cf. Remark 1).

Remark 3. (P) is better conditioned numerically than (P°), since (P°) involves
a time grid of order 8t/ ¢, while (P) involves only a grid of order 8¢, at least in the
simulation part. A time grid in 8¢/¢ is still needed to compute the averages and to
minimize the Hamiltonian.

p(T)=0

1.2. An approximation theorem. The averaged problem is used here to compute
a near optimal control for the problem (P°), with an error of order £2. The proof and
assumptions are close to those used in [2].

Assumptions.

(H1) U* =RP?; no constraint.

(H2) L does not depend on 6; f and L are C°, of class C” in x, and u; the first-
and second-order derivatives of f are bounded, and Lipschitz; the second-
order derivatives of L are bounded, and Lipschitz.

(H3) (P) has a solution, with optimal control u,, trajectory y and adjoint state q.

(H4) Let H(p,x,u,t,0)=p"f(x, u,t, 0)+L(x, u, t). There exists 8>0 such that,
for all (x, u, t, 8), 3°H/dv* is greater than B Identity at point (q(t), x, u, t, 6),
in the sense of the cone of positive semidefinite matrices.

(H5) One has

*H &H (aZH )“ *H ]
G, =0 at (q(t), x u, , 8) for all (x, u, 1, 0).
|:ax2 axav\av:/) ovox at (q(t), x, u, 1, 6) for all (x, u, 1, 6)

oH
(H6) f()"(t), uO(t’ 0)9 t’ 0) and 3’;(‘](‘), J’(t), uO(t, 0)9 t’ 0) are Cl in ¢ With a
Lipschitz derivative.

Assumptions (H4) and (HS5) ensure sufficient regularity of the control with respect to
the cost. Assumption (H6) is specific to averaging: if it did not hold, there would not
be a true separation of time scales.

THEOREM 1. Let f and L meet Assumptions (H1)-(H6). Define u® by u°(t)=
ug( t,t/€). Then u® is near optimal for the problem (P*) with an error on the cost of order
€”.

Sketch of proof. (A detailed proof can be found in [4].) We will proceed in two
stages. First, we will exhibit a lower bound of the cost for any control u."We will then
show that the control u° induces a cost which approximates this lower bound with an
error of order &2 It is then easy to conclude that u° is near optimal for the problem (P*).

Remark 4. Unless otherwise stated, all partial derivatives will be taken at time ¢,
with x being y(t), u being uy(t, t/e)=u°(t), 6 being t/e and the adjoint state being
q(t). We will make use of the following conventions: if g(o, ) is a periodic function
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of 6, we will denote by g(o) or g(o, ) or av (g(o, +)) the average of g in 6. We then
define the operator II on periodic functions g, by II(g(o, -)) being the only primitive
in 6 of g—g with a null average. II plays a key role in all developments of integrals
or solutions of differential equations involving a periodicity in fast time. Finally, the
superscript T denotes transposition.

LeMMA 1. Let x5(t, 0) =IL(f(y(2), uo(t, *), t, - )(0). There exists £,=>0, k=0, such
that, for any control u and any ¢ €0, go[, x being the trajectory driven by u in (4), the
Jollowing estimation holds:

IT L(x(1), u(t), 1) dt = JT L(y(t), uo<t, -8’-) t) dt

0 0

+e J av [%i—{(y(t), q(t), ue(t,*), t, ) x(1, ')] dt

0
—£q(0)x,(0, 0) — ke>.

Proof of Lemma 1. We will denote by X and # the following errors:
t t
20 =x(0-y0-en(1 L), a0=uw-uf1%)

It should be noticed that, if x, is defined by

(6) %=gfx,+:—fx2, x,(0)+x,(0,0)=0
and if #=0 (that is, x is the trajectory driven by u°), then y+ex,+ex,(t, t/€) is a
uniform approximation of x with an & error.

We will use developments of functions with integral remains. To this end, we will
use the following notation: for A in [0, 1], u in [0, 1], F,(A, ) will denote the Hessian
symmetric operator associated with the second-order derivatives of f in x and u, at
point (y(t), Au(exy(t, t/e)+X(t)), uo(t, t/e)+Auii(t), t, t/€). LA, n) will denote the
analogue for L and H,(A, u)=q" (t)F,(A, u)+ L,(A, u) will denote the Hessian of H
at the same point.

We will also make use of the following linear quadratic oscillatory “tangent”

problem:
dz of t of
—_—— — _ +— =
i ax(z+x2( t, 8)) P v, z(0) + x,(0,0) =0,
(7) . (TP?)

Mvin J:) [%(ZT, vT)YH,(0,0)(z", vT)T+p2T(t, ;t) (%z +a—a£v)] dt,

where p,=—-II(6H"/ax). p, is the analogue of x, for the adjoint state.

Thanks to (H4) and (HS), (TP®) has a unique solution with trajectory y,, optimal
control v, and adjoint state q,. Moreover, ||y; |- and | v,]| are bounded when ¢ ranges
within a neighbourhood of zero. Finally estimates will bear on the quantity

2 j mj delZ,O0 w2

0 ]

Z.Ow w)() = () + [(%fu)_la‘fgc ] (r(t)+ exz(t, ;‘))

r=X—gey,, v=uU—gv,,

where
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the derivatives being taken at the same interpolation points as for F,(A, u), L,, (A, u)
and H,(A, u).

At last, ~ will denote an approximation with an &> error.

LEMmMaA 1.1.

T T
J' L(x,u,t) dtzj L(y,u, t)dt+¢ J
0

0 0

T[eH sH].
+ ———_|xdt
) x 9dx

T 1 1
+J' dzj AdAI d,u,()?T+ex27(t,—t),ﬁT)H,(/\,,u)
0 0 0 €

N (J’E+ exzft, t/e)).

u

T

dH
—x, dt —£q(0) "x,(0, 0)
ax

Proof of Lemma 1.1. The cost is expanded at the second order using an integral
remain. Since there is no constraint, ¢” (3f/du)+ (3L/du) = 0; the Hamiltonian appears
after a classical integration by parts. We then neglect all integrals depending on fast
time when of order larger than or equal to &°.

LeEmMMA 1.2. There exists k=0 such that

Irl%=k(e*+22) and |lo||j2=k(e+22).

Proof of Lemma 1.2.

dds b d( (1))
,8

dt dr dt " dt dt
t t
(8) =f(r+y+3x2+3.l’1,v+“o+501,t,_)“f(y,“o(t,"),t’_t)‘ea—f()’l'*‘xz)
€ £ € ax
af ] t
—Eauvl_en[at(f(y, uO(ta )’ t’.)](g)a

since 8/96[I1(f)]=f—f. The second expression is equal to

t t
f(r+y+ex2+ £y, U+ uyt+ev,, t,—) —f(y+ex2+ £y, Uyt €V, t,—)
& E

O PR W S

V] 0 1
v then appears as a difference in the controls and is replaced by

Ze()«,u)-—[@-zﬂ)_l o’H ](r+ex2).

av*) dvax

Using the Gronwall lemma, and neglecting the integrals of fast periodic functions at
the second order, we get the estimate on |7||.. The estimation on |v| ;2 is obtained
through the definition of Z..
LEMMA 1.3. r can be approximated uniformly with an error of order €* by r,, with
dr,

t t
—=flrntytex,tey,vtu,tev,t— —f(y+ex2+sy,,uo+evl, t,—),
9) adt € €

r1(0)=0.

In particular, one has ||r,||%=2k(e*+22).
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Proof of Lemma 1.3. Note that (9) is close to (8). We then get the result by using
the Gronwall lemma. We will now use r, rather than r.
LEMMA 1.4. There exists k=0 such that, for ¢ € ]0, 1]:

T Y 7 T
j (a_g_a_I!)gdtggJ p{(t,—t->[—j:rl o ]dt—-ks —kez?.
o \0x 0x 0 g/ Ldx u

Proof of Lemma 1.4.

() e ) 2) 22

and X = r,+¢ey,. Hence, integrating by parts, and neglecting second order terms,

L (%’%)xd’”‘s Lrﬂrj,( (g, 7, uo(t, ), t,- ))](f)rldt
+8J'0Tp27(t,£> [f(x, u, t,;t) —-f(x—rl,u—v, t,i-)]dt.

T t t t
6{ PZT(ta—>|:f(x’uata_)—f<x_rl,u_vst9~)]dt
0 & & &
T t\[ of af] J’T ( t)
T R B A A - T -
BL pz(t, s)[axrl-l-auv dt—ke , D> t’e

T of of ]
T _ — 7, +- _ 2+ 2
€ L Pz( 5) [6xr1 P dt—ke(e*+22)

But

(Inf*+1ol) dt

v

v

by Lemma 1.2. On the other hand,

[ i)}
i)
(| ECT) B

] [
= —ke{ Inflo+
= € I'lleo L‘,

dr,
dt
by averaging estimations. But, from (9) and Lemmas 1.2 and 1.3, one sees that there
exists k>0 such that ||dr,/dt| .+ = k(1+22); this completes the proof.
We are now going to study the second order term with H,(A, u) in Lemma 1.1.

LEMMA 1.5. There exists k>0 such that:
1 1 1 gt
J dtJ Adr J du (T +exT, T H,(A, M)(" :"2>
0

0 0
! ! ! r+ex, ) )
=2 | dt| rdrx | du(n+ol)H(A u) o —ke*+ BzZ.

0 0 0
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Proof of Lemma 1.5. By substituting Z, —[(3°H/av*) ' 9H/ov dx](r+£x,) to v in
the integral and using Assumptions (H4) and (HS5), one shows that the expression on
the left-hand side is greater than [, dt fy A dA J du B|Z. (A, w)(1)], that is, Bz2.

This will be the only positive term in z2; the others will be of the form —kez2.

Note that Lemma 1.4 already displays one part of the cost to be minimized in
problem (TP®). The other part will appear by replacing H,(A, u) by H,(0,0) in the
estimates of Lemma 1.5.

LEMMA 1.6. There exists k=0 such that:

T 1 1
2eJ dtj mj (T, v?)H,u,m(’*j"Z)

0 0 0
T T T r+ex, ) »
ze | (y1,v1)H(0,0) o dt —ke* —kezz.
0

Proof of Lemma 1.6. Since the second derivatives of f and L are Lipschitz,
I H(A, w) = H(0, 0)]| = KAp(|x = | +|u — uo") /> = Kap(|r + £x,+ 3, + |0 — 0, ") /.

As x,, y, and v, are bounded, there exists k> 0 such that:

&

I dt Jl Adr Jl d/"(yl'i'v{)[Ht(A’ w)— H,(0, 0)](

r+ sz)
0 0 0

=ke(e®+|r|%+]v]32)-

We get the result from Lemma 2.
LEMMA 1.7. There exists k=0 such that:
T

T T . BH -
L(x,u,t)dt=| L(x,u°t)dt+e a—xz dt —eq(0) "x,(0, 0)
0

0 0

T
+ej pzT(t,—t> [grl+ﬂv] dt
0 € 0x ou

T +
+e j (yT, o) H,(0, 0)<r :x2> dt+z2(B — ke) — ke,
0

Proof of Lemma 1.7. Combine the results of Lemmas 1.1, 1.4, 1.5 and 1.6.
We are going now to complete the estimate by using the problem (TP®).
LEMMA 1.8. There exists k=0 such that:

T t T +
€ I pzr(t,;) [ﬂrl+gv] dt+e J (y1, v])H, (0, 0)(r :x2> dt = —ke(e*+2%).

0 0x v 0

Proof of Lemma 1.8. Transformations using the adjoint equations of (TP°) and
the explicit value of v, as a feedback yield the following estimate for the expression
on the left-hand side:

T t t
eI qlrl:f(x,u,t,—)—f(x—r,,u—v,t,—)—a—frl—a—fv] dt
0 € € ax Ju

which is clearly of second order in (||r,||*+ | v]|32)"/?; from Lemmas 1.2 and 1.3 we get
the result.
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From Lemmas 1.8 and 1.7 the estimation proposed in Lemma 1 is proved for ¢
sufficiently small to make Bz2 dominant against —ke. This completes the proof of
Lemma 1.

LEMMA 2. We are going to estimate the cost induced by U°®.

Let now u=u®, that is i =0. Then:

t

T T GH
J L(x, u®, t) dt zj L(y, u®, t) dt —eq" (0)x,(0,0)+ ¢ J = dt.

0 0 0

Proof of Lemma 2. We can use Lemma 1.1 to get a first estimate:

t

T T oH
I L(x, u® t) dtzj L(x, u®, t) dt—eq” (0)x,(0,0)+ ¢ J B;xz dt

0 0 0

T 1 1 32H
+I dt J AdA J du (X7 +ex3) —5 (A, w)(X+ex,)
0 0 0 ax

where 9°H/9x? is computed at the same point as for H,(A, ). Since X is of order one
in g, the last integral is of order two. Proceeding as in Lemma 1.4, we also show that
the integral before that one is of order two. This completes the proof of Lemma 2.
Theorem 1 follows from Lemmas 1 and 2.

COROLLARY 1. If u is a “better” control than u® for the problem (P°®), then:

1 1
[x—yllo= k£(1+-\/—ﬁ> and |lu—u| 2= k8(1+J_=B)'

Proof of Corollary 1. Denote by J°(u) the cost in problem (P°). For £€]0, 1],
one has J(u)=J*(u®)—ke?+ (B —ke)z2, with k=0. If u is better than u®, then
(B — ke)z? = ke”. Take € < B/2k; then z2 = 2k/ Be. The result follows from Lemma 1.2.

2. The nonperiodic case.
2.1. An ergodic theorem on O.D.E. Let

7 {R” x[0, T]xR,~>R"
" U(x, 1, 0)>f(x,1,6)
meeting the following assumptions:
(H7) f is Lipschitz in (x, t) with Lipschitz constant A, and integrable in 6.

(H8) f has an average f in the sense that, for any bound B, one has:

1 t+r _
Sup |- f(x,t,0)do—f(x,t)| —— 0.
xl=B IT J¢ T>+00
te[0,T]
=0

As before, (H7) ensures that one has a true separation of time scales.
Let x° and y be defined by:

dx* t
ad __f(xE’ t’ _)a xE(O) = Xo, te [O’ T],
€

(10) dar

(1 D0, yO)=x, te[0,T)
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Then
Sup [x*(t)=y(t)] —> 0.

te[0,T]

Proof. At a fast time scale, the slow time ¢ can be considered as constant, as well
as x°(t) and y(f). Hence the dynamics f can be approximated by f; integration yields
the result.

More precisely, let D e N* and, for t€[0, T, let t, = kt/ D. Then:

ds

1

-yl [ ool T [ |30 2) (300,12
+DZ
k=

j |f_(}’(s), s)—F(y(t), tk)ldS

(]

D-1 1 s _
+ X I f()"(tk), Iy, ") —fy(t), te)| ds
k=0 J g €
D8 f+r
=A J |x?(s) - y(s)|ds+A1—+tI ISup TI f(x, ¢t 0)do
x|=[1yllo 7
1e[0,T]

=0

-f(x,t)|——0

Choose D = D(¢) such that D(e)—,,,% and eD(g)—,.,,0; use of the Gronwall
lemma yields the result.

2.2. The averaged problem. Section 2.1 can be viewed as a generalization of
averaging techniques to the nonperiodic case. We are now going to use it to define
the averaged problem in the nonperiodic case.

Let f and L be as in § 1.1, except that now they need not be periodic in 6, and
define problem (P¢) accordingly. The important point in the definition of the averaged
problem is that of the set W*? of admissible controls. W*¢ will be the set of functions
u from [0, T]XR, to R”, with values in U*® for almost every (1, 6), and such that
Sf(x,u(t,0),t 6) and L(x, u(t, 0), t, 6) have an average in 0 for every (x, t).

Note that W’ may be empty. However, we will show that, if averaging can
reasonably be expected to be used (i.e., the minimized Hamiltonian has an average),
then W* is nonempty (see § 2.3).

For u in W* we define the averaged problem:

=f(y,u(t,-), 1), y0)=x, tel0,T],
(P).

T

Minimize J L(y,u(t,-),t,-) dt,

0
If f and L are periodic, we find the same definition as in § 1.1.

2.3. The Hamiltonian of the averaged problem. In this section, we will omit the
mention x and t. All assumptions made will be supposed to hold for every x and t.

Define the pseudo-Hamiltonian h(p, u, 8) by h(p, u, 8) =p"f(u, 6)+ L(u, 8) and
let H(p, 8) = Min,,. =« h(p, u, 0) when it exists.
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We are going to show that if H has an average for any p, then its average is the
minimum of the Hamiltonian of the averaged problem. We will use the following
assumptions:

(H9) For any bounded part B of R?, f and L are bounded and uniformly
continuous on BXR, (i.e., f and L are in BUC (B, R.)).

(H10) Forany (p, 6), h(p, u, ) has a minimum on U*. Moreover, for any bounded
domain B in R” there exists a compact set K in U? such that the minimum
can be reached in K for any (p, 6) in BXR,.

(H11) H has an average H, i.e.,
14" _
—I H(p, 9) d0——+——> H(p) forall pinR".
T 0 T—>+00

THEOREM 2. Let f and L meeting (H9), (H10) and (H11). Then W** is nonempty
and H(p) =Min,ewe p"f(v)+ L(v).

Proof. Denote p”f(v)+ L(v) by h(p, v) forvin W andlet E={peR" 3ve W%,
H(p)=h(p, v)}. Asobviously i( p, v) = H(p) for any vin W% Theorem 2 is equivalent
to E =R". We are going to show that E is closed and that R" — E is of null measure
(Lebesgue).

(i) E is closed.

If E =, this is true. If E # ), let p, be a sequence in E, converging in R", with
H(p,,) h(pn, v,). Thanks to (H9) and (H10), f(v,) and L(v,) are bounded; let f and
L be two cluster pomts and w, a subsequence such that f (wn) —>,,_,°o f and
L(W,) = -0 L. We are going to exhibit a control v such that p”f + L= p”f(v)+ L(v).

Let 7, be an increasing sequence in R, such that 7, = n! and such that, for 7= 7,:

L (@, 0y do -7 | <2

T, exists since w, is in W Define v by v(8)=w,(8) for 8 in [7,, 7,.[; it is then
easy to check that v is in W* and that p”f+ L= h(p, v).

(ii) R"—E is of null measure.

H is locally Lipschitz, thanks to Assumptions (H9) and (H10), and thus, if F
denotes the set of differentiability points of H, R" — F is of null measure. We are going
to show that F< E.

Notice that, thanks to (H9) and (H10), there exists a measurable function u from
R" xR, to U such that H(p, 8)=h(p, u(p, ), 6). Let p be a small positive number,
p in F and q a direction in R". Then:

H(p+pq)—H(p, 0)§qrf(p,u(p, 0), o)éH(p, 6)—H(p—pg, 6)
p p
Let I be a cluster point of 1/7 [g q7f(p,u(p, 8), 0) do as 7> +0; [ exists thanks
to (H9) and (H10). Then let 7 > oo first, then p - 0 in the above inequalities. We conclude
that I=9H/dp in the direction q.
As this is true for any cluster point and any direction g, we have

aHT

hm Jf(p, u(p, 6),0) do=

_ Since f and H have an average, L has an average and u(p, 6) is in W, with
H(p)=p"f(u)+L(u).
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Remark 5. The concavity of H in p is essential. Let H(p, 6) =sin (p, 8). H=0,
yet dH/ap has no average.

2.4. A limit theorem on the Bellman function. Assumption (H11) has given sense
to the averaged problem by ensuring that W*® is nonempty. It also yields a limit
theorem on the Bellman function. We will consider the latter as the unique viscosity
solution of the Hamilton-Jacobi-Bellman equation (see [7]).

Assumptions. Let

.{R"xR”x[O, T]xR,.~>R,
(p,x,t,0)>H(p, x,t0).

H may represent, for instance, the minimized Hamiltonian of § 2.3. The assumptions
are the following:

(H12) HeBUC(BxR"x[0, TIxR,) for any bounded part B of R", and
|H(p, x,1,0)—H(p, y,1,0)|= C(1+|p))(|x~y].

(H13)  H has an average H such that, for any p, x, f,

f+r
;J' H(pax,tao)do—ﬁ(pyxst) ——:'—)0
: T>+00

Sup

t=0

THEOREM 3. Let V be the viscosity solution of

V. _[(dV
(12) Z—t+H( '’ , X, t) =0, V(x, T)=0, xeR", te[0, T]
Let V* be the viscosity solution of:
ave ave t
(13) +H<—, X, t, —) =0, Ve(x, T)=0, xeR", te[0, T].
at ax €

Then V* converges to V as ¢ tends to zero, uniformly on any compact subset of R" x[0, T].
Proof. We will make use of the following notation:

L% i(R" %[0, T]) = {¢ € Lf,(R"x[0, T],R), Sup J | (x, )| dx dt < °°}-

Ix—yl<1
te[0,T]
ﬁ,},,? (R" % [0 T1]) is the set of functions ¢ in L2 ;(R" x [0, T1) such that 9¢/at, d¢/dx
and 6°¢/ox? exist and are in L%, WZLE is the analogue of W*'? except that L” is
replaced by L%.... We can use the norm on W2%Z defined by the sup of W2 norms
over all B(y,1)x[0, T], where B(y, 1) is the closed ball of center y and radius 1.
We will denote, for a >0, by V7, the unique solution in M,z WZLP of

Ve Ve t
(14) o AV’+H(8 %1, —) =0,  Vi(x T)=0
t ax €
and V, the analogue for
V, _(aV,
(15) 9—“+aAVa+H(——,x, :) =0, V.(x T)=0.
at 0x

It is well known [7] that
|Ve— Ve o=kva and |V,-V|.=kva.
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Moreover, k does not depend on the behaviour of H in time, that is, in particular
k does not depend on &. Hence, the theorem will be proved if, @ being fixed, V;
converges to V, for ¢ in ]0, 1]. Estimates on the derivatives of V_, ensure that the V7,
are bounded in (and thus form a weakly relatively compact subset of) W22 for any
p>0. Thus, the (V%,9V:/ox) are relatively compact in C°(K x[0, T],R), K being
any compact subset of R". Let (V,,dV,/dx) a cluster point and (V% aV/ax) a
sequence converging to (V,,dV,/dx) uniformly on any compact, with Vi —, . V,
in W2L? weakly.

Proving the theorem thus amounts to showing that V, is a solution of (15) in the
weak sense. Let ¢ a function in C*(R" x [0, T]) with a compact domain.

st \% _ ~ V
I d:J dx[§—5+aAVa+H<?—Vﬂ,x, t)]¢(x, 1)
t R" at 0x

X

vt oV %4 _

=J dtj dx[—g—a °‘+aAVa—aAVf,:|¢(x, t)
1 R" ot at

it av, t Ve t
+J' dtj dx[H(-——“,x, t,—)-H(g—ﬁ,x, t,—)]¢(x, 1)
t R" 0x € 4x €

it {3V ‘_/a t
+I dtj dx[H(a——a,x, t)—H(a—,x, t,—)](ﬁ(x, t).
t R" ax ox £
2,1,2

As ¢ tends to zero, the first expression has limit zero by weak convergence in W, ;;.
The second one tends to zero thanks to the Lebesgue dominated convergence theorem.
A discretization scheme similar to that used in § 2.1 ensures that the third one has
limit zero, thanks to Assumption (H13).

Remark 6. It can be proved [4] that, if H is locally Lipschitz in p and if the
convergence in Assumption (H13) is uniform for x in R", then the convergence of V*
to V is uniform on R" x[0, T].

One may wonder when (H12) is true with H =p”f+ L. It is true if, for instance,
fand L are BUC and Lipschitz in x. However, this can be extended to the case where
f is uniformly continuous, Lipschitz in x with |f]= k(1+]|x|+|u|); and L is uniformly
continuous, locally Lipschitz in x, |oL/dx|=k(1+|x|+|u|) and |L|=k(1+|x]*+|u]),
L=k (—1+]ul?).

This includes the linear quadratic case; actually, we might call this the “sublinear
quadratic case.” With a suitable truncation of f and L on the phase domain, we may
keep V° and V unchanged on a portion of R" x[0, T], while retrieving Assumption
(H12). The convergence is still uniform on any compact.

3. Perspectives. We have proven here, at least in the periodic case, that averaging
can be used as an efficient tool in deterministic optimal control. It is efficient for two
reasons.

First, the averaged problem (P) is easier to solve numerically than the original
problem (P°), since a “fast” time grid is no longer needed in the simulation part.
Gains should also be expected on the state space grid, since it is often related to the
former one; it is an important point if one thinks, for instance, of dynamic programming.

Second, and thanks to Theorem 1, the solution of (P) is known to be near optimal
for (P); hence, we do not lose much by solving the averaged problem instead of the
original one.

We have shown that use of the averaged problem can also be expected to be
efficient in the nonperiodic case, as the optimal cost of (P¢) is close to that of (P)
when ¢ is small (Theorem 3).
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However, practical problems are seldom under the form (P¢), be it in the periodic
or nonperiodic case. Most of the time, there is, for instance, no explicit separation of
the time scales under the form (¢, 6), with 6 ranging from 0 to +00; in particular,
periodicity or averaging assumptions cannot be checked directly. Nevertheless, the
results presented here provide an important theoretical background for developments
of both theoretical and practical interest.

From the theoretical point of view, it is reasonable to expect problem (TP¢) in
Lemma 1 to provide further expansions of the cost (J°), as similar methods have
already been used with success in the case of regular and singular perturbations [2].
A complete expansion of the Bellman function in the linear quadratic periodic case
has already been obtained [4]. In particular, the terms of order higher than two are
in the form V(x, t, t/e, (T —t/€)), with periodicity in both the forward and backward
fast times. This is probably related to the existence of the terms x, and p, in the
expansion of the primal and dual trajectories. The same phenomenon exists in singular
perturbations with boundary layers instead of phase terms.

We have seen that x, and p, are defined through the operator I1. In fact, IT appears
in any expansion of an integral with an integrand periodic in fast time. A generalization
of I would be welcome if we hope to find some results equivalent to Theorem 1 in
the nonperiodic case.

At last, links should be developed with singular perturbations. From the practical
point of view, we have seen that the assumptions in Theorems 1 and 3 cannot be
checked directly. It should be noticed (especially in the nonperiodic case) that the
question is not so much that the assumptions might not hold, as it is rather to immerse
the optimization problem in the “right” family of problems (P?). Moreover, the ideas
are sufficiently simple and general to be used in heuristics. One can think, for instance,
of separating the time scales through the use of “moving averages.” Heuristics can
also be developed to generalize the operator II to the nonperiodic case and use it to
improve performances. We are going to experiment numerically on these ideas.

Conversely, averaging has been often used empirically by engineers in practical
problems. The results and notions presented here may provide them some guidelines
in further applications.

We have discussed how averaging could be used practically. We shall discuss now
when it could be used. Heuristically, averaging can be expected to yield good results
and performances when the dynamics of a system depend on a fast “erratic’” exogenous
phenomenon. A good example is given by weather disturbances.

However, these phenomena are often modelized by stochastic processes. As we
mentioned before, both approaches are similar in the sense that they make use of
averages; their theoretical background is, however, quite different. Moreover, averaging
has also been used in stochastic control ([5], for instance). In all cases, the original
data consists often of a finite number of physical measures, in no way probabilistic or
two-time scaled in nature. Thus, neither approach is justified a priori. Therefore, it
should prove quite interesting to experiment all methods on various sets of data. We
plan to conduct such experiments.
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