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We propose a method to build a three-dimensional adapted surface mesh with respect to a mesh size map 
driven by surface curvature. The data needed to optimize the mesh have been reduced to an initial mesh. The 
building of a local geometrical model but continuous over the whole domain is based on a local Hermite 
di!use interpolation calculated from the nodes of the initial mesh and from the normal vectors to the surface. 
The optimization procedures involve extracting from the surface mesh sets of triangles sharing the same 
node or the same edge and then remeshing the outer contour to a higher criterion (size or shape). These 
procedures may be used in order to re"ne or coarsen the mesh but also in a "nal step to enhance the shape 
quality of the elements. Examples demonstrate the ability of the method to create adapted meshes of 
complex surfaces while meeting high-quality standards and a good respect of the geometrical surface. 

KEY WORDS: unstructured mesh generation; mesh adaptation; mesh optimization; moving least squares;
di!use approximation

1. INTRODUCTION

The accuracy of the "nite element method is highly dependent on the density of the mesh. In order
to control the quality of the analysis, error estimation procedures can be applied to provide
information on optimal mesh density [1}5]. The process involved in mesh adaptation techniques
is iterative. Once an initial coarse mesh is created, a "rst solution is obtained, and an error
sensitivity analysis can be performed in order to calculate the density of the optimal mesh. When
the densities of the optimal mesh have been computed, a new mesh which respects the prescribed
density is generated. The aim of such a procedure is to improve the accuracy of the numerical
solution while reducing the number of elements. The decision of re"ning the mesh is based on
whether the element error exceeds a threshold speci"ed by the user.

The generation of a three-dimensional surface mesh [6, 7] of an object with an imposed density
while meeting &acceptable' shape quality requirements is a di$cult and time-consuming task.
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Without pretending to be exhaustive, we have classi"ed di!erent methods by which a CAD mesh
can be adapted. Surface mesh adaptation techniques can be classi"ed into two di!erent categories
according to the use or the non-use of the parametric space.

The "rst group of techniques makes use of the parametric surfaces provided by a modeler. The
surface of the object is composed of a set of patches provided by a CAD environment. The most
frequently used method to generate a surface mesh consists of using a mapping technique between
the two-dimensional parameter space of each patch and another parameter space suitable for
meshing. The di$culties of the mapping from parametric to real space have been fully described
in a paper of De Cougny and Shephard [8]. The authors propose a method in which the
triangulation of the patches is achieved in the real space in order to obtain good mesh size while
maintaining surface mesh validity requirements. Solutions to overcome the di$cult problems
coming from the periodicity or possible degeneracy of parametric space are fully discussed. Once
the mesh is obtained, a post-treatment is achieved to enhance the quality of the mesh but also to
check its validity through overlapping and intersection tests. The authors show that element size
can be controlled in the parametric space provided by the modeler. Since new nodes are
calculated on the geometry itself, the geometrical features of the object being obeyed is guaran-
teed. In a di!erent spirit, NoeK l et al. [9] propose an approach to adapt free form surface mesh in
a CAD environment. The surface domain is described by B-spline or Bezier trimmed patches
[10]. To overcome the problems occurring with patch-by-patch techniques, nodes can slide on
a patch or jump from a patch to another one. The basic idea relies on an analogy between a "nite
element mesh and the equilibrium position of a network of branches and the position of nodes is
controlled through the solution of the equilibrium equations of the bar network. The approach
"rst presented in a two-dimensional context has been extended to free form surfaces.

The same distinction in the use or the non-use of the parametric space can be made when the
mesh is created by advancing front technique directly on the surface instead of using a surface
mapping method. The underlying parametric representation of the surface patches can be used
with a local patch metric derived from the "rst fundamental form in order to create better quality
elements. In this spirit, Tristano et al. [11] propose an original automatic mesh generator for 3D
parametric surfaces using the advancing front method with a Riemannian surface in order to
overcome problems coming from the parametric space The creation of an element from the data
of a segment on the boundary is fully discussed. George and Borouchaki [12] also propose to use
a Riemannian metric in a Delaunay context.

Techniques of the second type are based on the polyhedral representation of the object by the
mesh itself and therefore do not use the parameter space. These techniques can also be gathered
into two groups. Techniques of the "rst group work on the mesh itself and no secondary
geometrical model is built to achieve the adaptation. The basic idea of these techniques is to use
a high-density mesh on which simpli"cation tools are performed. However, the mesh must allow
to capture the smallest details of the geometry and the sudden changes of curvature in the model.
The criterion used to remove a node from the triangulation is often based on the distance between
the node and a plane calculated by least-squares "t from the data of the neighbouring nodes.
VeH ron and LeH on [13] propose a node selection criterion based on an easy approximation of the
Gaussian curvature. Thereafter, nodes are sorted according to their probability to be removed
from the initial mesh. Among these techniques, a recent paper of Hattangady [14] presents also
a coarsening technique of mesh models for representation of rigid objects in "nite element
analysis. The basic idea is to reduce signi"cantly the time spent by the solver by representing the
mesh model of the rigid objects with as few elements as possible. The procedures developed are
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used as a "lter before running the analysis. Mesh coarsening is computed in order to eliminate
all unnecessary nodes and elements. Graded meshes can be obtained but since no new nodes
are added, the initial mesh size must equal the size of the smallest feature to be maintained.
The decimation process is based on edge collapsing, edge swapping and planar Laplacian
smoothing.

By opposition to an advancing front technique which makes use of the local paramatric space,
Lau and Lo [15] proposed a technique based on surface normals and tangents evaluation in
which the surface is meshed directly by an advancing front technique without regard to the
parametric representation of the underlying geometry. However, surface projections must
be performed to locate the new nodes on the surface and intersection tests are required to ensure
the mesh validity.

Among the techniques which do not use parametric space, the main idea of the second group
consists of using the mesh to create a geometrical underlying model. Borouchaki [16] uses
a method introduced "rst by Walton and Meek [17] for constructing a global composite surface
from a triangular polyhedral representation of a surface, each triangle representing an individual
patch. The iterative algorithm to enhance the mesh is based on edge splitting, edge collapsing,
edge swapping and nodal shifting. Such approaches allow not only mesh coarsening but also
mesh re"nement.

In order to quantify the di!erence between the geometry and the mesh during the adaptation
process, authors have proposed geometrical error estimators. To measure the accuracy at which
the mesh can describe what would be a smooth exact geometry of the deformed sheet under the
assumption of membrane kinematics, Bonet [5] uses a geometric error estimator. The error is
based on an estimated strain tensor between discrete and approximate geometries. The basic idea
is that many processes involving deformation of thin sheets and materials like metals or polymers
take place under incompressible conditions. The in-plane strain components of the stain tensor
would result in a change of the shell thickness. The value of the error is given by the L2 norm of
the strain tensor as the integral over the volume of the second invariant of the strain tensor. In
order to capture the variations of curvature, De Cougny and Shephard [8] use a simple, purely
geometrical criterion. For a given radius of curvature R and a given error e the maximum
allowable arc length is approximated by the chord length ¸"8Re/(1#4e2).

The method we propose in this paper belongs to the second group of techniques since no use is
made of the mapping provided by a CAD modeler. The geometrical support is build by
a weighted moving least squares [18] approximation method on a local window denoted as
di!use approximation [19, 20]. In our case, interpolating weights have been chosen. The objective
is to determine a local surface equation using the nodes of the initial mesh and the normal vectors
to the surface calculated from the mesh. The determination of an interpolating local surface
equation, however continuous over the domain, enables us to locate nodes on the surface with
respect to the curvature during a re"nement process. It also allows us to control the coarsening of
the mesh. We believe that the continuity, the accuracy and the low computational cost of our
geometrical di!use model are the main advantages of our technique.

The method is also used to compute the principal curvatures on the surface. In order to
demonstrate how well the geometry can be represented with our di!use model and only in this
purpose, a geometric error estimator has been used. The results show that the method can be
easily coupled with any estimator during a "nite element analysis. The respect of the geometry
has been successfully validated on usual primitives such as planes, cylinders, cones, spheres and
torus. No assumption is made on the surface model. The surface may be closed or not and contain
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inner loops. Edges may be multiply connected and non-manifold cases can be handled without
restriction.

The approach can be recommended for instance in metal forming techniques involving the
deformation of initially #at thin sheets of metal [21] into dies of complex shapes or in the blowing
of thin sheet in polymer industry. In large boundary motion problems, the element size along
Lagrangian surfaces can induce problems of accuracy and the technique can be used to overcome
the basic shortcomings of the mesh distortion and element entanglement encountered in the
Lagrangian formulation. We also believe that the local representation of the surface can be used
to improve the e$ciency and the accuracy of the local search procedures in contact searching and
treatment of the contact.

2. BUILDING OF THE HERMITE DIFFUSE MODEL

This chapter introduces some basic notions about metric properties of surfaces [10]. The form of
surface suited to the local di!use interpolation is denoted as Monge patch [22]. A classi"cation of
nodes and edges is also presented. The determination of the local surface by Hermite di!use
interpolation is fully discussed.

2.1. Curvature of a Monge patch

A Monge patch is a patch of the form

X :;PR3

X (x, y)"(x, y, z (x, y))

where ; is an open set in R2 and z :;PR is a di!erentiable function.
The maximum and minimum of the normal curvature at a given point on a surface are called

the principal curvatures. The Gaussian curvature of a regular surface is given by the product of
the two principal curvatures.

For a Monge patch, the Gaussian curvature is given by

K"

1

R
1

1

R
2

(L2z/Lx2) (L2z/Ly2)!(L2z/LxLy)2

(1#(Lz/Lx)2#(Lz/Ly)2)2

and the mean curvature is
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R
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R
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(1#(Lz/Ly)2)L2z/Lx2!2(Lz/Lx) (Lz/Ly) L2z/LxLy#(1#(Lz/Lx)2)L2z/Ly2

(1#(Lz/Lx)2#(Lz/Ly)2)3@2

The principal curvatures can be easily derived from the above relationships.

2.2. De,nitions. Classi,cation of nodes and edges

A triangular element of the mesh is denoted as a face. By analogy on superconvergent patch
recovery method (SPR) as proposed by Zienkiewicz and Zhu [3, 4], we shall denote as patch the
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Figure 1. Node and edge classi"cation: (a) detection of sharp edges. The cosine between normal vectors
n1, n2 of adjacent faces F1 and F2 is less than a limit speci"ed by the user; (b) detection of a singular node.
The angular defect at P is D2n!(a1#a2#a3#a4#a5)D; (c) detection of a singular node on a boarder
edge. Node P is shared by two boundary edges at which the cosine between the two orientated edges is

less than a threshold given by the user.

set of elements whose nodes play a role in the di!use interpolation scheme. The central face on
which we decide to calculate the surface equation is denoted as the reference face.

The neighbourhood of a node can be de"ned as the set of nodes which share an edge with this
central node. This set is constituted by the nodes belonging to one level of element around the
node.

A classi"cation of the nodes and the edges is performed. Figure 1 illustrate the di!erent node
and edge types. The detection of features is based on an angle criteria. We are aware that
the robustness of the approach depends upon the angle threshold and upon the tolerance
chosen, especially for complex models. In this paper, we have chosen not to give much
emphasis to this problem. However, we are working on a technique to detect intersection
lines between geometrical features using the di!use model. Nevertheless, sharp edges and
singular nodes which have not been detected or which must appear on the new mesh
can be speci"ed interactively. Furthermore, as far as the mesh is driven by a criterion
which measures the accuracy with which the mesh describes the geometry (this point is detailed
in Section 3), we experienced that the method proved to produce a reasonable estimate
even when a sharp ridge or a singular node was not identi"ed as far as the angle threshold is less
than 453.

Edges are classi"ed into three sets: boundary edges, sharp edges and interior edges. Edges
belonging to a single face are boundary edges. As shown in Figure 1(a), if the cosine between
normal vectors of two adjacent faces is less than a limit speci"ed by the user, the edge is denoted
as a sharp edge. Other edges are interior edges.

Nodes are gathered into 4 types: boundary nodes, nodes belonging to sharp edges, singular
nodes and interior nodes. A node is denoted as singular (top of a cone for instance) when its
angular defect is greater than a threshold speci"ed by the user. The angular defect at an interior
node of the surface mesh is de"ned as the absolute value of 2n*&sum of interior angles of faces
sharing the node' (Figure 1(b)).

A node shared by two sharp edges or by two boundary edges and at which the cosine of the
angle between the two oriented edges is less than a threshold given by the user is also considered
as a singular node (Figure 1(c)).
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Figure 2. Determination of a local Monge patch z"f (x, y). A local set of axis (G, X, >, Z) is calculated
at each face. G is the center of gravity of the face. Plane (X,>) can be determined by least-squares "t from

the nodal set of neighbouring nodes.

2.3. Choice of the surface parameters

We want to determine a local surface equation from the data of a set of nodes and from the
average normal vectors evaluated at each node. In order to compute a local equation, we suppose
that at each node, we can "nd a neighbourhood on which the surface can be interpolated by
a Monge patch of equation z"f (x, y) as shown in Figure 2.

An important issue regarding implementation of the method is the local co-ordinate system
with which the surface equation is expressed. We noticed that the choice of the projection plane
(plane of the reference face or least-squares "t plane from the nodal set) has no noticable in#uence
on the result provided that normal vectors of elements belonging to the same patch are close
enough. A least-squares "t method has been chosen.

In order to construct a surface equation on which we plan to evaluate curvatures, we have
decided to evaluate the surface equation through a second-order equation. The polynomial is
de"ned over each patch of element attached to a reference face. The surface equation can be
expressed as

z"f (x, y)"S1,x, y,x2,xy, y2Ta"pTa

where a is a 6 coe$cient vector.
In order to recover a bilinear surface equation over the patch, there must be at least 6 nodes in

the patch. During the adaptation process, nodes are likely to be created, slid or even removed. As
a consequence, whenever a node must be projected on the di!use model, a patch (or a reference
face) must be determined. For this reason, we decided to choose a di!use interpolation neighbour-
hood based on a face model. However, an approach based on nodal patch evaluation can also be
carried out.

The selection of the nodal interpolation set and the computation of the normal vector to the
surface are now discussed.

2.4. Neighbourhood determination

As shown in Figure 3(a), nodes selected for the di!use interpolation model must belong to the
ring of elements sharing at least one node with the reference face. This set represented in
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Figure 3. Determination of the interpolation set: (a) ring of elements sharing at least one node with the
reference face; (b) set of neighboring nodes; (c) the reference face is on the top of a cube. Lateral faces are
rejected from the patch; (d) non-manifold topology. Elements belonging to the upper surface are rejected

from the patch associated to reference face F.

Figure 3(b) is composed of the neighbourhood of the nodes which constitute the reference face.
Elements containing a sharp edge are rejected from the patch except if the edge belongs to the
boundary of the patch. On our example represented in Figure 3(c), lateral faces are rejected from
the patch.

If an upper and lower surface share a common internal vertex (Figure 3(d)), the curvature at the
shared vertex cannot be uniquely represented. In order to overcome the problem of non-manifold
topology, the ring of elements selected for the di!use interpolation patch are determined by
adjacent progression around the reference face. As shown in our example (Figure 3(d)), this
element selection procedure guarantees that upper elements are rejected from the set and such
non-manifold topologies can be handled.

The computation of normal vector to the surface at singular node is detailed thereafter.

2.5. Computation of normal vectors

The normal vector to a surface node is calculated as the average of all normal vectors of
faces shared by the node weighted by the area of each face. However, the computation of
the normal vector at sharp edge nodes or at singular nodes requires a special treatment.
We recall that normal vector computation is used to determine a local Monge patch
equation associated to a reference face. Therefore, the set of elements used to calculate the normal
vector to a node is restricted to the triangles attached to the patch at which the di!use
interpolation is computed.

On Figure 4(a), we want to determine the Monge patch of reference triangle F1 located on the
upper face of a cube and the Monge patch of face F2 located on a lateral side of the cube. Sharp
edges delimit 3 di!erent areas, the upper face and two lateral faces. The set of interpolation
elements attached to F1 (respectively F2) is restricted to elements belonging to the upper face of
the cube (respectively lateral face). Figure 4(b) illustrates that the computation of the normal
vector at a singular node or at a node belonging to a sharp edge may change according to
the reference face at which the interpolation is calculated whenever areas of di!erent normal
vector meet.

We note that a node or an element can belong to di!erent patches. Also, whenever a node
is projected on the di!use model, di!erent patches can be used as far as the validity
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Figure 4. Computation of normal vectors to the surface mesh: (a) the mesh represents the vertices of a
cube. Monge patches associated with faces F1 and F2 must be determined; (b) determination of normal
vectors at P1 and P2. n

11
and n

21
(respectively n

12
and n

22
) are associated with the di!use interpola-

tion at face F1 (respectively F2).

of the interpolation area is not only restricted to the boundary of the triangular element.
This is made possible only because the di!use interpolation is continuous from one element
to a neighbouring element (provided that the adjacent elements are not separated by a
sharp edge).

2.6. Hermite di+use interpolation

The di!use approximation method has been introduced by Nayroles et al. [19] and recently
discussed by Breitkopf et al. [20]. The di!use approximation is equivalent to the standard moving
least squares (MLS) introduced by Lancaster [18] based on polynomial approximation but is
more general in the sense that additional constraints may be easily introduced. Several ap-
proaches are based on the MLS method providing smooth approximation of data across
irregular patterns of nodes. Meshless methods have been fully presented in an exhaustive survey
provided by Belytschko et al. [23].

The MLS method is local: at any arbitrary evaluation point x, only the closest nodes x
i
are

taken into account. The in#uence of a node x
i

is governed by decreasing weight functions
w
i
"w (DDx

i
!xDD) which vanish outside the domain of in#uence of the node.

In a general case, the MLS approximation does not interpolate data. This property is achieved
by introducing singular weight functions w which take an in"nite value at the node. The new
weights may be obtained by scaling the original weight functions in a way to give a unit value at
a node w

i
(x

i
)"1 and then by applying the following substitution:

[w(x
i
, x)]PC

w (x
i
, x)

1!w(x
i
, x)D

The di!use interpolation method only di!ers from the di!use approximation in the choice of the
weighting functions. In the case of the di!use interpolation, interpolating weights are chosen. The
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Figure 5. Interpolating weight functions w (x
i
, x): (a) the di!use interpolation is calculated at a point x;

(b) x
i
belongs to reference face F, (wa, wb, wc)"(1, 1

2
, 1
2
); (c) Node xi is adjacent to F, (wa, wb, wc)"(0, 1

2
, 1
2
);

(d) Node xi is linked by one edge to F, (wa, wb, wc)"(0, 0, 1
2
).

di!use approximation in its standard form has been transformed in order to take into account
derivative entities provided from the surface equation.

We experienced that the criterion based on normal colinearity has a major in#uence on the
resolution of the di!use method and therefore enables a more accurate computation of the
curvature than a "tting method based on a single set of node (as di!use interpolation does if
normal vectors are not taken into account).

Assuming that two adjacent patches from the geometry model are connected with respect to
tangency rules, our technique guarantees that the interpolation is continuous over the whole
surface. Patches are not only calculated for strictly interior faces but also for elements which have
a boundary edge or a sharp edge. Patches based on such faces are determined with a fewer
number of nodes and the curvature computation may fail when the number of nodes is too low. In
such case, the order of the surface equation is decreased and a standard di!use interpolation can
be applied.

The di!use approximation leads to the minimization of a criterion J
x
(a) composed of two terms

J
1x

(a) and J
2x

(a).
All entities described below are expressed in the local co-ordinate system associated with each

patch. We consider a set of n interpolation nodes.
Let M

i
(x

i
, y

i
, z

i
) be a node belonging to the set.

The criterion suggesting the interpolating condition can be written as

J
1x

(a)"
i/n
+
i/1

w (x
i
, x)](pT(x

i
!x) a!z

i
)2

where w
i
are interpolating functions associated to each node M

i
of the set.

The computation of the weights is obtained as follows:

The di!use interpolation is calculated at a point x located on the reference face as shown in
Figure 5(a). For each node x

i
belonging to the patch, its in#uence on the evaluation at node x is

determined by setting to 1 the value a!ected to x
i
. The value of nodes connected to x

i
by one edge

is set at 1/2 ("rst level of nodes). The value at other nodes is set at 0. Finally, the contribution
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inside the element is given by the shape functions of the triangle. Weights are normalized in a "nal
step. w (w

i
, x) functions have been represented in Figures 5(b)}5(d).

Our computation of the weights is based on the topology of the mesh only and the best
solution would be to include the edge lengths according to the geodesical distance
in the computation process. A solution could consist of computing a "rst di!use model
based on our simpli"ed weight computation. Then, the edge lengths could be calculated
with the help of the metric provided by the di!use model. We "rst used a procedure in
which edge lengths were calculated as euclidian distances on the initial mesh. The results
show that no important changes can be observed as far as the initial mesh provides a
reasonable description of the geometry. Moreover, we noticed that the interpolation
condition reduces the in#uence of the distance between the evaluation point x and the
contributing nodes x

i
. The main role of the weights is to guarantee the continuity of

the model over the whole domain. Furthermore, we experienced that when edge lengths were
taken into account, the cost of the evaluation of the di!use interpolation was higher than the
mesh adaptation process.

In order to obtain a low-cost evaluation of the di!use interpolation, we implemented speci"c
data structures. We experienced that the cost of the di!use interpolation was less than 10 per cent
of the mesh adaptation process even for larger models.

The normal vector to the surface mesh is de"ned as n"n
i
x#n

i
y#z.

The normal vector to the Di!use Monge patch is given by

n
$*&&

"

LM

Lx
]

LM

Ly
"!

LP

Lx
x!

LP

Ly
y#z

It can be concluded that the criterion based on the colinearity of normal vectors is

J
2x

(a)"
i/n
+
i/1

w (x
i
, x)]GA

LpT(x
i
!x)

Lx
a!n

ixB
2
#A

LpT(x
i
!x)

Ly
a!n

iyB
2

H
Finally, the "nal criterion which take into account both the condition can be expressed as
follows:

J
x
(a)"(1!t)]J

1x
(a)#t]J

2x
(a) where t3[0,1]

The above criterion can be rewritten as J
x
(a)"(PTa!r)T=(PTa!r)

where PT"[P (x
1
!x), P (x

2
!x), . . . , P(x

n
!x)] and r(r

1
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2
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n
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Figure 6. Representation of connecting "llets by hermite di!use interpolation: (a) mesh of a Twingo cup;
(b) representation of several adjacent Monge patches along a connecting "llet area.

and = denotes the diagonal by blocks matrix of the weights given by

="

1!t 0 0

w (x
1
, x) 0 t 0 ) )

0 0 t

) ) )

1!t 0 0

) ) w (x
n
, x) 0 t 0

0 0 t

The minimization of the quadratic error criterion J
x
(a) leads to the 6]6 system

(P=PT )a"P=r

The system is solved for each patch at the centre of gravity of the reference face.
In Figures 6, points have been created from di!erent patches on a "llet area.

3. CONTROL OF THE MESH SIZE

In order to measure the accuracy with which the mesh describes the geometry, an error estimator
inspired from Bonet's work [5] and proposed by Rodriguez-Villa [24] has been used. The
estimator provides a relationship between the length ¸ of an edge of the mesh and the smallest
principal curvatures radius of model R. The error e is estimated with the following formula:

e"m2 S1#
1

(1!m2/4)2
with m"

¸

R
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Figure 7. Diagram e (error)"f (Length/Radius of curvature).

Once the error is chosen, the maximum allowable length must be determined. The previous
equation in which ¸ is unknown has been solved. In order to guarantee a fast computation of the
error, we estimated the maximum allowable length by a Taylor expansion. A study (Figure 7)
shows that if the error value does not exceed 10 per cent our estimation remains valid and that the
approximation can be limited to the second order. The relationship between the error e and the
length ¸ is given by

¸"J2]e](1.68179!0.594604]e)R

4. ADAPTATION PROCESS

The di!erent steps of the adaptation process are described. The adaptation technique involves
local modi"cation of the mesh in order to satisfy an a priori given error [1}5]. These techniques
are based on optimum mesh size evaluated from an error estimator. Interior edges can be
connected to any number of faces. No special restriction is made concerning the number of faces
connected to an interior edge. In order to clarify our explanations, we shall consider that interior
edges are connected to two faces exactly.

4.1. Classi,cation of vertices and edges

Mesh vertices and edges are classi"ed. Boundary edges are identi"ed. Sharp edges, singular
interior and boundary nodes are determined with respect to angles between neighbouring edges
or elements. Values of these parameters are set a priori by the user.
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4.2. Creation of contour lines and inner curves

In order to allow node evaluation on contour lines, boundary and sharp edges are chained to
create a network of boundary and inner curves (namely cubic splines). Singular nodes are located
at the extremities of the curves. When a closed loop is detected, two curves of equal length are
created to overcome the problems encountered with one-to-one parameter space.

4.3. Creation of a secondary di+use interpolation model

The mesh is modi"ed since the process is iterative. The original mesh, denoted as reference mesh,
is used as background mesh in order to locate new nodes on the original surface. The reference
mesh is also used to determine the value of the criterion (in our case, the curvature). In order to
optimize the projection of the nodes and the query on the reference mesh for criterion evaluation,
a di!use interpolation model associated to the modi"ed mesh is updated at each step of the
process. The evaluation of nodes during mesh enrichment or mesh coarsening are "rst made on
this model and projected thereafter. Intensive use is made of the data structures developed for 3D
mesh generation e$ciency [25, 26]. In particular, entities belonging to the reference mesh are
stored in an octree [25].

4.4. Node and criterion evaluation

The surface mesh is orientated and the Hermite di!use interpolation is built from the
initial triangulation. A list of edges is constituted. Every edge from the list is examined to
determine whether the edge must be kept, split or removed from the triangulation in order
to satisfy the criterion. The decision is made by evaluating the error criterion at the middle of
the edge.

The computation of the error criterion depends on the edge type: boundary edges, sharp edges,
or interior edges.

4.4.1. Evaluation on boundary and sharp edges. If the edge belongs to the boundary of the surface
or to an inner curve (sharp edges), the middle of the edge is evaluated using the parameter curve of
both nodes of the edge. Then a query to the reference mesh is made in order to determine the
closest face to the node. In the case of a boundary edge, only one reference face can be found.
Otherwise, the sharp edge is shared by two faces. The evaluation face is the one which has the
smallest radius of curvature.

4.4.2. Evaluation on interior edges. The last case occurs when the edge belongs to the interior of
the surface and is not a sharp edge. The edge is shared by two faces. The middle node is evaluated
using the updated di!use interpolation model. The node is thereafter projected on the reference
surface. In that case, the two radii of curvature on the surface are similar, and any face can be
chosen for evaluation. However, the decision is made to the patch which has been determined
with the greatest number of nodes.

4.5. Mesh optimization procedures

We decided to adapt the mesh by using a local remeshing strategy. Similar procedures have been
described by many authors [13, 14, 24, 25] and only a brief description of the technique is given.
We experienced that the local transformation approach is numerically robust.
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Mesh optimization procedures based on optimum mesh size and shape are carried out in an
iterative process. The method involves extracting sub-meshes from the surface mesh. Sub-meshes
are constituted of triangles sharing the same node or the same edge. The contour of the set of
triangles is then remeshed to a higher criterion size or shape. The process is repeated as long as
the mesh can be enhanced. We observe that our heuristic approach leads to a monotone
convergence. However, no theoretical termination proof can be given.

The procedure are known as edge swapping, vertex removing, edge removing, edge splitting
and edge collapsing. In the case of edge collapsing, elements sharing at least one node of the edge
are selected.

The method consists of "nding all triangulations of a convex polygon composed of a given
number of nodes. The number of nodes has been limited to 8 for e$ciency requirements. The
criteria of all di!erent triangles which can be created from all triangulations are calculated. The
di!erent mesh combinations do not depend on the position of the nodes, and are therefore
pre-programmed. In a context of tetrahedron mesh optimization, Rassineux [25] uses a local
advancing front technique when the shell is not convex. A similar approach has been used. The
contour is triangulated in the plane associated to the local Monge patch. In that case, there is no
limitation of the number of faces constituting the contour.

A local transformation only changes a set of triangles in a "xed area and since the transforma-
tion is performed if the sub-shell is valid and can be meshed to a higher criterion, no invalid
triangulation can occur. Furthermore, di!erent criteria can be used for optimization of the mesh.

If an edge is at least twice as long as the value determined by the criterion, the edge is split
considering the point in the middle of the edge in the parameter space.

If an edge is at least twice as short as the value determined by the criterion, edge collapsing or
node removing procedures can be applied.

Our edge swapping strategy consists of improving the quality of a pair of triangles with respect
to a 3D criterion which combines both a shape quality criterion and the geometrical error
estimator e de"ned in Section 3.

The shape quality criterion for a triangle is de"ned as follows:

Qe(¹ )"
a]o
¸

where ¸ is the longest edge length of the element and o, the ratio of the radius of the circle
inscribed in the element. A coe$cient a is applied so that the higher criterion (equilateral element)
is set at 1.

Edge swapping is performed when both shape quality and geometrical error criteria can be
improved. However, no sharp edge can be removed from the triangulation.

In a "nal step, a simple nodal repositioning technique is achieved. For each node, the polygon
constituted by the edges which surround the node is determined. The method consists of creating
a set of nodes in the vicinity of the node (with respect to the local Monge patch of the surface).
Then, the node which provides the best quality is chosen. The cost of the method is higher than
a Laplacian smoothing technique on the Monge patch but provides better results on curved
patches.

4.6. Mesh validity

Singular nodes are not removed. Edges on contour lines and inner curves must be preserved.
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Figure 8. Front door of a car (Numisheet99 benchmark): (a) initial mesh; (b) mesh at e"0.01. No size
smoothing procedure has been applied; (c) mesh at e"0.05; (d) mesh at e"0.02; (e) mesh at e"0.01;

(f ) mesh at e"0.001.

4.7. Mesh size smoothing procedure

A mesh is obtained after the adaptation process. Even if this mesh respects a size map provided by
the criterion, it has to be enhanced in order to guarantee a smooth gradation of the mesh over the
whole surface. We propose a simple method to remedy the mesh distortions by smoothing the size
map of the mesh.

Once all curvatures have been determined on each face, the corresponding allowable edge
length is computed. Our smoothing strategy consists of comparing the size assigned to a face with
its neighbouring values. The maximum gradation ratio between two adjacent faces is set at
a value between 1 and 2. This also allows us to control the gradation of the mesh. We compared
our strategy with an approach in which the mesh was enhanced in a "nal step. We experienced
that better results were obtained if the size map was smoothed a priori.

5. EXAMPLES

The shape quality criterion of a triangle has been de"ned in Section 4.5. In order to validate our
method, we have decided in a "rst step to adapt meshes used for numerical sheet forming
simulation. These examples provide a signi"cant overview of the di$culties encountered with
sudden changes of curvature (especially when connecting "llets are represented) and demonstrate
the ability of the hermite di!use approximation technique to respect the geometry and to capture
the variations of curvature. In a second step, we have adapted complex shape models comprising
a large number of sharp edges. Highly graded meshes can be obtained while meeting good shape
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Figure 9. Tank: (a) initial mesh; (b) mesh at e"0.1; (c) mesh at e"0.01; (d) mesh at e"0.001.

Table I. Front door of a car (Numisheet99 benchmark).
Mesh statistics.

Numisheet Nele Qmin CPU(s)

Initial mesh 8813 0.25
e"0.05 2936 0.48 4
e"0.02 6800 0.49 9
e"0.01 13 074 0.43 21
e"0.001 31 444 0.43 69

quality requirements. The CPU time of the process on a PC Pentium II 333 MHz is less than
1 min for models composed of 10 000 elements. We noticed that a majority of the CPU time is
spent in the remeshing process and especially in projection operations on the reference mesh
which explains that the CPU time depends on the number of elements on the initial mesh.

The "rst example (Figure 8) is a front door of a car (Numisheet99 Benchmark). Some
connecting "llets have been represented roughly on the initial mesh which explains the presence
of planar areas close to highly curved zones. This example show, as we expected, that the accuracy
of the interpolation greatly depends on the initial mesh. We can see in Figure 8(b) the mesh when
no size smoothing procedure is applied.

This example shows that our approach can be applied in order to get a new mesh which
preserves with accuracy the geometrical features of the model while reducing the number of
elements. The examples also demonstrate the geometrical criterion ability to capture curvature
variations. The results of the remeshing process at di!erent geometrical error criteria are
presented in Table I.
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Figure 10. Polymetallic mass (Hajar mines): (a) initial mesh; (b) mesh at e"0.1; (c) mesh at e"0.01.

Table II. Tank mesh statistics.

Tank Nele Qmin CPU(s)

Initial mesh 5990 0.80
e"0.1 5941 0.57 5
e"0.01 13 562 0.47 11
e"0.001 31 488 0.63 34

This example (Figure 9) shows that a good quality mesh can be obtained even when planar
surfaces meet highly curved areas (especially in the area close to the cylindrical hole) and also
provides a good illustration of the simple, however e$cient, size smoothing procedure. Results of
the adaptation process are provided in Table II.

Figure 10 show the mesh of a polymetallic mass (Hajar mines in Moroco). This example
provide a signi"cant overview of the main di$culties that can be encountered: high curvature,
sharp edges, complex shapes, high number of elements on the initial mesh. We remark that the
distribution of elements of the initial mesh (Figure 10(a)) do not follow the curvature of the model
and this example demonstrates the e$ciency of both enrichment and decimation processes. The
results of the remeshing processes are given in Table III.

The last example is a steering gearbox (courtesy of Peugeot SA). The size of the initial mesh
shown in Figure 11(a) is almost regular. The example combines the following di$culties: high
curvature in the area of connecting "llets and complex shapes due to the presence of many sharp
edges. Mesh statistics are provided in Table IV.
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Table III. Polymetallic mass (Hajar mines). Mesh statistics.

Hajar Nele Qmin CPU(s)

Initial mesh 17 010 0.278273
e"0.1 6264 0.34 17
e"0.01 31 166 0.39 85

Figure 11. Steering gearbox (courtesy of Peugeot SA): (a) initial mesh; (b) mesh at e"0.01.

Table IV. Steering gearbox (courtesy of Peugeot SA).
Mesh statistics.

PSA Nele Qmin CPU

Initial mesh 23 634 0.09
e"0.01 37 004 0.12 126

6. CONCLUSION

We have presented a method to build a three-dimensional adapted surface mesh with respect to
a mesh size map driven by surface curvature from the only data of an initial mesh. The results
show that the method can be easily coupled with any estimator during a "nite element procedure
and demonstrate the ability of the Hermite di!use approximation technique to respect
the geometry. The approach can be used in the context of a 3D adaptive process to modify the
boundary mesh with respect to a size map provided as a result of a posteriori error estimator and
we plan to couple the surface mesh generator to a 3D mesh generator which respects a size
criterion [26]. We are also using the high-resolution curvature analysis provided by Hermite
di!use approximation to geometrical feature recognition. Results already show that the basic
surfaces (plane, cone, torus, spheres) can be identi"ed.
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