Mathematical morphology for vector images using statistical depth - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2011

Mathematical morphology for vector images using statistical depth

(1) , (1)
1
Jesus Angulo

Résumé

The open problem of the generalization of mathematical morphology to vector images is handled in this paper using the paradigm of depth functions. Statistical depth functions provide from the "deepest" point a "center-outward ordering" of a multidimensional data distribution and they can be therefore used to construct morphological operators. The fundamental assumption of this data-driven approach is the existence of "background/foreground" image representation. Examples in real color and hyperspectral images illustrate the results.

Dates et versions

hal-00658951 , version 1 (11-01-2012)

Identifiants

Citer

Santiago Velasco-Forero, Jesus Angulo. Mathematical morphology for vector images using statistical depth. 10th International Symposium on Mathematical Morphology and Its Application to Signal and Image Processing, ISMM 2011, Jul 2011, Verbania-Intra, Italy. pp.355-366, ⟨10.1007/978-3-642-21569-8_31⟩. ⟨hal-00658951⟩
153 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More