T. Coupez, Réinitialisation convective et locale des fonctions level set pour le mouvement de surfaces et d'interfaces, pp.31-32, 2006.

L. Ville, L. Silva, and T. Coupez, Convected level set method for the numerical simulation of fluid buckling, International Journal for Numerical Methods in Fluids, vol.4, issue.3
DOI : 10.1002/fld.2259

URL : https://hal.archives-ouvertes.fr/hal-00595325

E. Labourasse, D. Lacanette, A. Toutant, P. Lubin, S. Vincent et al., Towards large eddy simulation of isothermal two-phase flows: Governing equations and a priori tests, International Journal of Multiphase Flow, vol.33, issue.1, pp.1-39, 2007.
DOI : 10.1016/j.ijmultiphaseflow.2006.05.010

A. Béliveau, A. Fortin, and Y. Demay, A Two-dimensional Numerical Method for the Deformation of Drops with Surface Tension, International Journal of Computational Fluid Dynamics, vol.18, issue.5, pp.225-240, 1998.
DOI : 10.1080/10618569808961687

J. Brackbill, D. Kothe, and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, vol.100, issue.2, pp.335-354, 1992.
DOI : 10.1016/0021-9991(92)90240-Y

S. Vincent, J. Larocque, D. Lacanette, A. Toutant, P. Lubin et al., Numerical simulation of phase separation and a priori two-phase LES filtering, Computers & Fluids, vol.37, issue.7, pp.898-906, 2008.
DOI : 10.1016/j.compfluid.2007.02.017

J. Smagorinsky, GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.
DOI : 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

A. Scotti, C. Meneveau, and L. D. , Generalized Smagorinsky model for anisotropic grids, Physics of Fluids A: Fluid Dynamics, vol.5, issue.9, pp.2306-2308, 1993.
DOI : 10.1063/1.858537

G. M. Pionelli-u and C. W. Moin-p, a dynamic subgrid-scale eddy viscosity model, Physics of Fluids, vol.3, pp.1760-1765, 1991.

X. Tang, Z. Qian, and W. , Improved subgrid scale model for dense turbulent solid-liquid two-phqse flows, Chinese Journal of Mechanics Press, vol.20, issue.4, pp.354-365, 2004.

D. Lilly, A proposed modification of the Germano subgrid???scale closure method, Physics of Fluids A: Fluid Dynamics, vol.4, issue.3, pp.633-635, 1992.
DOI : 10.1063/1.858280

R. Bellman and R. Pennington, Effects of surface tension and viscosity on Taylor instability, Quarterly of Applied Mathematics, vol.12, issue.2, pp.151-162, 1954.
DOI : 10.1090/qam/63198