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Abstract: We review recent advances in the suppression of the slugging phenomenon by model-based
control. We focus on three aspects of recent contributions: models, observers and control laws. For each
category, we evaluate and compare existing solutions, and propose directions for improvement.

1. INTRODUCTION

We investigate recent advances in the field of model-based con-
trol of the slugging phenomenon. We focus on the contributions
in terms of modelling, estimators and feedback control laws.

Slugging is an undesirable multiphase flow phenomenon aris-
ing on oil production facilities, mainly wells and flowline risers.
The main concern associated with slugging is that it causes
the level of production to decrease. The mechanisms of these
losses, corresponding to a bifurcation behavior first described
in Zakarian [2000], are schematically summarized by Figure 1,
where the level of production is plotted against the opening of
the outlet valve for a slugging well. For high values of the open-
ing, the production periodically oscillates in time. The average
of these oscillations is lower than the equilibrium production,
which is a first cause for production losses. More importantly,
these oscillations may damage the pipe, and hurt the separation
process. For this reason, operators are forced to close the outlet
valve, which stabilizes the flow (as evidenced by the pioneer
works of Schmidt et al. [1979]), but yields a lower level of
production. This is the second and main cause for production
losses, which motivates the need for control laws that enable
one to operate at open-loop unstable operating points.

Among the viable solutions to cope with the slugging phe-
nomenon, we focus in this paper on feedback actuation of the
outlet valve ! , as first proposed in Blick et al. [1986]. Successful
implementations of PI controllers using pressure sensors in
feedback loops have been reported since the 1990s Courbot
[1996], Hedne and Linga [1990]. In order to improve the per-
formances of controllers, one can rely on dynamical models
reproducing the behavior of slugging systems. After describing
existing models, we review how they are utilized to design
observers and control laws well-suited to the slugging problem.

The article is organized as follows. In Section 2, we review the
existing dynamical models reproducing the slugging behavior.
In Section 3, we describe how these models, along with ap-

I other solutions include reducing the diameter of the pipe or installing slug

catchers, and are usually less cost-efficient.

Copyright held by the International Federation of
Automatic Control

55

—— Equilibrium production
51 = = = Average production
—— Min and max of the oscillations

4.5

STABLE UNSTABLE

3.5F

250
Desired level of production

5l ‘\i‘"‘""éruggiﬁg' fovel ~ ]
n of production

0'50 10 20 30 40 50

Outlet valve opening [%]

QOil mass flow rate [kg/s]
w

Fig. 1. Schematic view of the impact of slugging on the level of
production.

propriate measurements, can be used in observer algorithm to
estimate missing information. In Section 4, we detail different
control strategies from the literature, before giving practical
conclusions in Section 5.

2. MODELLING OF THE SLUGGING PHENOMENON

In this section, we review and compare existing models re-
producing the two-phase slugging phenomenon, dividing them
into two categories: distributed parameters models and finite
dimensional models.

2.1 Distributed parameter models

The systems subject to the slugging phenomenon, oil wells and
flowline risers, consist of pipes ranging from several hundreds
to several thousands meter-long pipes filled with oil, gas, and
sometimes water. The distributed nature of these very long sys-
tems naturally suggests models consisting of Partial Differential
Equations (PDE). Whereas these complicated models are tradi-
tionnaly used for simulation purposes only, recent contributions
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propose to directly derive observers Bloemen et al. [2006] or
control laws Di Meglio et al. [2012] from PDE models.

Simulation-oriented models  PDE models for two-phase flow
are derived by writing mass and momentum conservation laws
for the gas and liquid phases on infinitesimal section of the
pipe. They can, again, be divided into two classes of models
described in greater details in Duret [2005].

o Two-fluid models feature separate momentum equations
for the gas and the liquid. The most notable two-fluid
model is the one embedded in the commercial multiphase

flow simulator OLGA™" Bendiksen et al. [1991], which
serves as a reference. It is able to reproduce the slugging
phenomenon observed on most systems, and is especially
accurate at steady-state.

o Conversely, drift-flux models feature a combined momen-
tum (and sometimes energy) equation for the gas and the
liquid, while an empirical slip equation relates the veloci-
ties of the two phases. Numerical implementations show-
ing the relevance of such models can be found in Belfroid
et al. [2010], Henriot et al. [2002].

Regardless of the class they belong to, none of the PDE mod-
els described in the literature have been, to our best knowl-
edge, directly used for control or observer design purposes.
Existing results rely on a discretization in space of these
infinite-dimensional models in view of a controllability analy-
sis Storkaas [2005] or the design of an Extended Kalman Filter
(EKF) Bloemen et al. [2006].

In the next section, we briefly describe a simplified model,
which takes into account the distributed nature of the phe-
nomenon while remaining simple enough for control design.

A PDE model for control In Di Meglio et al. [2011], we
describe a drift-flux model for two-phase slugging flow, able
to reproduce the slugging phenomenon. The model consists
of two mass conservation laws, written for the gas and liquid
phases, respectively, and one combined momentum equation.
The main simplifying modelling assumption lies in the slip
relation, which is assumed, following Sinegre [2006] to take
the following form
Voo
Vg =V = p

where v, is the gas velocity, v; the liquid velocity, ; the liquid
hold-up. v is here a constant tuning parameter whereas, on
most drift-flux models, it is assumed to depend on the phys-
ical states of the model, following various possible empirical
relations (see e.g. Brennen [2005]). This allows us to write
the system equations in closed form as a three-state quasilinear
hyperbolic system as follows

ou Ou

57 L0+ AW (1, x) = G(x) ey
where u(t, x) is the vector of states comprising, as components,
the mass fraction of gas, the pressure and the velocity of gas,
defined on the space domain x € [0, L], L being the total length
of the pipe. Along with appropriate boundary conditions, this
model reproduces the slugging phenomenon, as illustrated by
the simulations depicted on Figure 2, where the evolution of
the liquid mass fraction and gas velocity profiles is presented.

2.1.2.1. Linear control design  After linearization around an
equilibrium profile, the model takes the form of the following
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Fig. 2. Liquid mass hold-up and gas velocity profiles at different
time instants. At ¢ = 8.1 h, a slug is formed at the bottom
of the pipe. It is then transported upwards and expelled
over the next .5 hours, while another slug is formed. The
velocity of the flow is inhomogeneous in space and time:
the slugging cycle comprises phases of acceleration and
deceleration, as pictured on Figure (b).

3x3 linear hyperbolic system of transport equations with space-
dependent velocities and source term coefficients

i (£, x) + A1 ()uy (1, x) = 0 @
uz(t, X) + A ()uz (1, X) + 021 (uy (£, X) + 023(0)v(t, x) = 0
3

vi(t, X) = p(0)vilt, x) + 031 (Dur (£, X) + o3 (Duz(t, x) = 0 (4)

where the states u;, u and v represent small variations around
an equilibrium profile, but have lost part of their physical
interpretation through state transformations?. The boundary
conditions for this system are expressed as follows

w1 (,0)) _ (q1

(uz(r, 0)) - (612) ve.0)
where g; and g, are non-zero coefficients, and U(?) is the con-
trol input, related to the opening of the outlet valve. The fact
that U appears only in the right boundary condition in Equa-
tion (5) suggests the use of boundary control techniques for
PDE. In Di Meglio et al. [2012], a full-state boundary feedback
law yielding exponential stability of the (u,u;,v) = (0,0,0)
equilibrium of system (2)—(4) is designed, using a backstep-
ping approach. In details, the destabilizing coupling terms o,
i,j = 1,2,3 are canceled using a backstepping transformation
transforming system (2)—(4) into an exponentially stable target
system. For more details on boundary control design using
backstepping, the interested reader is referred to Krstic and
Smyshlyaev [2008a,b], Vazquez et al. [2011].

v(t, 1) = U() &)

To our best knowledge, the control law derived in Di Meglio
et al. [2012] is the first to directly handle destabilizing terms
arising from the distributed nature of the phenomenon. This
should prove efficient in stabilizing expansion-driven slugging

2 More precisely, u; represents small variations of the gas mass fraction around
the equilibrium profile. The two other states, up and v, may be interpreted as
pressure waves traveling in opposite directions inside the pipe, but are related
to the original physical state variables in a non-trivial way which is hard to
interpret.
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or the density-wave phenomenon. However, the proposed con-
troller is not implementable as is, since it requires full informa-
tion on the distributed states of the system, which is not realistic
in practice. For this reason, the design of a boundary observer
using topside measurement is currently under investigation, and
should be the subject of future contributions.

This analysis, although promising, stresses the need for simpler,
finite dimensional, models, for which control theory provides a
vast array of tools in view of stabilization. We now review such
existing models for slugging.

2.2 Finite dimensional models

In this section, we briefly describe four lumped parameters
models: the Jansen model for gas-lifted wells, the Storkaas
and Jahanshahi models for risers with low-points, and the
Di Meglio model, for vertically inclined wells. This list is
not exhaustive and other efforts include the models proposed
in Kaasa et al. [2007], Da Silva and Nydal [2010]. An extensive
comparison of the capabilities of these different models is
presented in Jahanshahi and Skogestad [2011].

To neglect the distributed nature of the slugging phenomenon,
finite dimensional models rely on strong simplifying modelling
assumptions. After reviewing the mechanisms generating insta-
bility in these models, we focus on two counterparts of such
simplifications: the calibration effort and the limited represen-
tativeness of these models.

Mechanisms and model structure

2.2.1.1. Mechanisms  The first finite-dimensional models
have been designed for very specific classes of systems, for
which the causes of the slugging instability are well understood.
Such models include the Jansen model studied in Eikrem et al.
[2002], Imsland [2002], Jansen et al. [1999], Sinegre [2006]
for gas-lifted systems, and the Storkaas and Jahanshahi models
described in Jahanshahi and Skogestad [2011], Storkaas and
Skogestad [2002] for flowline risers with low-point. For both
these classes of systems, instability is generated by a blockage
of gas at a certain location in the system. In the case of gas-
lifted wells, the gas contained in the casing can only enter the
tubing if the pressure drop over the injection valve is positive.
In the case of risers with low point, the liquid, accumulating
at the low-point angle, acts as a valve blocking the flow of
gas there. In both cases, the blockage of gas causes a build-
up of pressure, followed by a “blow-out” where gas and liquid
abruptly accelerate and exit the pipe at high flow rates, before
the slugging cycle repeats.

This mechanism has been extended to a broader class of sys-
tems in Di Meglio et al. [2009, 2010a]. The main assumption
of the Di Meglio model is the existence of a irregularity, causing
the blockage of gas, and modeled as a “virtual valve”. On
the two classes of systems mentioned above, the irregularity
is clearly identified as the gas injection valve for gas-lifted
wells, and the low-point angle in the case of flowline risers. By
extrapolating this mechanism to, e.g., vertically inclined wells,
we are able to reproduce the slugging behavior of some systems
for which no finite dimensional models existed. This is the case
of the well schematically depicted on Figure 3(a), for which we
have plotted the measured and reconstructed pressure variations
on Figure 3.
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(a) Schematic view of a 5700 meter-long well in the North Sea. The well
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(b) Measured and reproduced pressure oscillations for the well depicted
on Figure 3(a).

Fig. 3. Geometry and pressure oscillations of a 5700 meter-long
well in the North Sea.

2.2.1.2. Structure of the models  These models, excepting the
one of Jahanshahi Jahanshahi and Skogestad [2011], share a
common structure that arises from the mechanisms described
above. The state variables are two masses of gas (m; and my,
here) separated by a valve, and one mass of liquid (m3). The
mass conservation laws for these three masses read

dm1

e (I = ewg i (1) — wimy, mp, m3) (6)
dm
d_t2 = €Wy in(t) + w(my, my, m3) = W oue(my, mo,mz)  (7)
dm
d_t3 = wyin(my, ma, m3) — Wy ou(my, mo, ms) (8)

where w, i, (resp. wy;,) is the total mass flow rate of gas (resp.
liquid) into the system, and wy;, (resp. wy, out) the total mass
flow rate of liquid into (resp. out of) the system. w represents
the mass of gas through the injection or virtual valve and € is a
design parameter. In the Jahanshahi model, an additional state
is considered, corresponding to the mass of liquid upstream
the low-point. Similarly to the flow of gas, the flow of liquid
through the low-point is assumed to satisfy a valve equation.

The detailed equations can be found in Imsland [2002] for the
Jansen model, in Storkaas [2005] for the Storkaas model and
in Di Meglio [2011] for the Di Meglio model. They comprise
several parameters which may require some tuning, as detailed
in the next section.

Calibration effort  The simplification of considering finite
dimensional models has an important counterpart in the cal-
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ibration effort. Indeed, some parameters of the models may
lose some of their physical meaning as empirical relations be-
tween physical states and modelling assumptions are consid-
ered. When it is the case, tuning procedures must be defined to
find the “right” values for these parameters, in a sense that we
now define.

Calibration is needed to ensure that the models reproduce quan-
titatively the behavior of a given system. The goal of a tun-
ing procedure is therefore to fit the dynamical properties of
the model to that of the system. A large part of these prop-
erties is summarized by the bifurcation diagram of the bot-
tom pressure. For this reason, the tuning procedures proposed
in Storkaas [2005] for the Storkaas model and in Di Meglio
et al. [2010b] for the Di Meglio model both match certain
parameters with a characteristic of the bifurcation diagram. For
example, in Di Meglio et al. [2010b], the volume of gas located
upstream the virtual valve can be calibrated to fit the position
of the bifurcation point.

Although most of the values of the parameters can be found
analytically, as the mathematical tractability of the models
increase, part of the tuning procedures remains on a trial-and-
error basis. This is one of the limitations of finite dimensional
models that we review in the next section.

Limitations and challenges  As a rule, there seems to be a
trade-off between the simplicity of the model, which allows
for a greater mathematical tractability (in particular, the tuning
procedure becomes more analytical as the models get simpler),
and representativeness of the model. We now give an example
that highlight this feature, comparing the model for gas-lift
proposed in Imsland [2002], Sinegre [2006], and our model first
described in Di Meglio et al. [2009].

In the model for gas-lifted wells described in Imsland [2002],
the inflow of oil coming from the reservoir is assumed to de-
pend linearly on the pressure difference between the reservoir
and the pipe. The so-called Productivity Index relating these
two quantities is usually known with an acceptable accuracy.
This relation allows the model to highlight the crucial mech-
anism through which slugging causes production losses: the
average pressure during slugging oscillations is higher than the
equilibrium production, which causes the level of production
during slugging to be lower than the equilibrium level.

However, in the model described in Di Meglio et al. [2009], the
inflow of liquid is assumed constant. The Productivity Index
relation is not needed to generate instability in the model, and a
constant liquid inflow greatly simplifies the analysis. It allows,
e.g., to write the equilibrium of the model in closed-form, which
would not be possible with a pressure-driven inflow. A constant
inflow is one of the reason why such a large part of the tuning
procedure proposed for our model in Di Meglio et al. [2010b]
is analytical, which is of course desirable.

This example shows that a challenge for future models should
be to find the right balance between physical meaningfulness
and mathematical tractability. Besides, despite the generaliza-
tion provided by the model presented in Di Meglio et al.
[2009], numerous systems feature behaviors that could not be
accounted for using existing finite dimensional models. Ex-
isting models cannot, e.g., reproduce the behavior of a well
featuring several slugs present at the same time in the pipe.
For other occurrences of slugging, such as the density-wave
phenomenon Hu [2004], Sinegre [2006] or expansion-driven
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Fig. 4. Geometry and pressure oscillations of a 2700 meter-long
well in the North Sea.

slugging, the distributed nature of the phenomenon cannot be
neglected, and a PDE model is required.

To illustrate these limitations, Figure 4(b) pictures the pressure
oscillations observed on a slugging well, that we will refer
to as the A-well, schematically depicted on Figure 4(a). The
frequency of the oscillations is much higher than these pictured
on Figure 3(b), in proportions that cannot be explained by the
shorter length of the A-well alone. In turn, the slugging seems
to involve here different mechanisms than the one modeled
by the “virtual valve”, that are yet to be understood. None of
the finite dimensional models discussed above were able to
reproduce the behavior of the A-well.

Despite these shortcomings, when the models are representative
of the considered systems, they can be used to estimate missing
measurements from available sensors, as described in the next
section.

3. OBSERVERS

In this section, we review various observer algorithms from
the literature. Various underlying models and combination of
sensors are considered. The majority of the observers described
in the literature are designed for gas-lift systems. This is of great
importance since the measurements available topside (i.e., in
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easily accessible locations) are in greater number than for wells
without gas-lift. We first review several estimation strategies
for gas-lifted wells, before describing an observer design for
simple vertical wells.

3.1 Observers for gas-lifted wells

Extended Kalman Filters (EKF)  Several contributions con-
sider the implementation of an EKF (see, e.g. Kailath et al.
[2000]) relying on nonlinear models for slugging. The EKF
consists in applying the linear Kalman Filter to the linearized
dynamics around the current estimation.

e In Bloemen et al. [2006], a discretized drift-flux model
(see Section 2.1) is considered. The EKF is first used
considering a distributed array of pressure sensors, which
is not realistic in practice. A second scenario considers
topside sensors only (both in the casing and the tubing),
and highlights the necessity of a liguid flow rate measure-
ment for the estimation of certain state variables > .

e In Eikrem et al. [2004], an EKF is used to estimate the
states of the finite dimensional model for gas-lifted wells
discussed in Section 2.2. The proposed scheme relies on
measurements of the topside and bottom pressures, and
presented simulations show that the availability of the
bottom pressure sensor is critical. The algorithm is tested
in simulations, where the estimates, despite featuring a
relatively small steady-state error, are used to stabilize a

gas-lifted well modeled in OLGA™".

Nonlinear observers A different class of observers for slug-
ging directly relies on the nonlinear models, rather than their
linear approximation. Most of these designs rely on the Jansen
model Jansen et al. [1999], Imsland [2002] for gas-lifted wells
discussed in Section 2.2. We now review several contributions,
corresponding to various combinations of available sensors and
different estimation strategies.

e In Sinegre [2006], an estimator for the bottom pressure,
using topside information from the casing only (both pres-
sure and inflow rate of gas), is presented. To decouple the
casing and tubing dynamics, the bottom tubing pressure
is assumed to vary slower than the bottom casing pres-
sure. This simplification yields an easily implementable
observer, but no proof of convergence of the scheme is
provided. The design is validated both in simulations and
on real-well data, but a control scheme using the mea-
surement in a closed-loop feedback law is only tested on
simulations.

e In Aamo et al. [2005], a nonlinear observer relying on
topside measurements from both the casing and the tubing
is designed for the Jansen model. The three measured
outputs are the topside casing pressure, topside tubing
pressure and topside tubing outflow rate*. A Lyapunov
analysis is used to prove convergence of the scheme,
which provides estimates for the three state variables of
model (6)—(8). Presented control experiments on mid-
scale experimental facilities illustrate the relevance of the
approach by depicting stabilization of a slugging system
using the estimated bottom tubing pressure as the con-
trolled variable.

3
4

in particular, the gas bubbles rise velocity
the flow measurement can be replaced by a density measurement.
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e Similarly, in Scibilia et al. [2008], a high-gain observer
relying on topside measurements from both the casing
and the tubing is designed for the Jansen model. The
observer features linear output injection functions, which
is the main difference with the observer design from Aamo
et al. [2005]. This simplifies the implementation of the
observer, but no proof of convergence of the complete
scheme is provided. The estimates are used to stabilize a
slugging system in simulations, with success.

3.2 An observer for vertical wells

The design of observers for simple vertically inclined wells
is more challenging than for gas-lifted wells, because of the
number and location of available measurements. In particular,
the measurements from the casing of gas-lifted well constitute
“upstream” information which is not available in the case of
simple wells. In this section, we describe an observer design for
the Di Meglio model first proposed in Di Meglio et al. [2010b].

3.2.0.1. Observer design  The aim of this observer design
is to provide estimates for the states of model (6)—(8) using
a measurement of the topside pressure only. The observer
equations are obtained by, rewriting system (6)—(8) with the
new set of variables (mp,y, m3), where the measured output y
is the topside pressure. The observer then consists of a copy of
the system plus a linear output injection term, as described by
the following equations

Model equations Observer
iy = filmy,y,ms) (i = fiGi, i)
y =f2(m1,y,m3) j\} :fz(”hl,j’,ﬁh)_k@_)’) (9)
msy = f3(my,y,m3)  \fy = f3(0, 9, ms)

3.2.0.2. Qualitative analysis ~ As of now, we cannot provide
a proof of convergence of the proposed scheme. However, the
following feature of the design deserves to be highlighted.

The design resembles a high-gain observer, but actually in-
volves different mechanisms. In particular, the gain k does
not need to be high to ensure convergence®. This point is
highlighted by the simulations depicted on Figure 5 where the
observer was tested on experimental data. The relatively low
value of the gain k allows the observer to filter the noisy topside
pressure measurement, while providing an accurate estimation
of the unmeasured bottom pressure (among other state vari-
ables).

The main challenge for the design of observers is now to gain
insight into their mechanisms by studying their stability. Pos-
sible directions include the use of Lyapunov functions Aamo
et al. [2005], possibly non-smooth (see e.g. Clarke [2001]) be-
cause of the switching nature of the dynamics. Another option
would be to exploit the fact that slugging corresponds to a limit
cycle, to extend results on linear oscillators (see, e.g., Praly
et al. [2006])).

The observers provide estimates of various state variables that
can be used in feedback loops to stabilize slugging systems.
In the next section, we review various control strategies which

5 Actually, it can be shown that one of the eigenvalues of the linearized error
equations of the observer around a trajectory goes to 0 when the gain k goes to
infinity. Thus, a large gain & is not desirable.
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Fig. 5. Simulations of the observer on experimental data, cor-
responding to slugging oscillations of a 100 meter-long
multiphase flow loop. The topside pressure measurement
is used in the observer algorithm described by system (9),
whereas the bottom pressure measurement is compared
to its estimate to evaluate the performances of the ob-
server. Previously, the model has been calibrated using the
method described in Di Meglio et al. [2010b] using the
same experimental data plotted here.

may rely on such estimate or directly on available measure-
ments.

4. CONTROL STRATEGIES

In this section, we describe the state-of-the-art of control strate-
gies for slugging. We consider separately the solutions not re-
lying on any model, i.e. Proportional-Integrator (PI) controllers
(possibly cascaded), and model-based control laws.

4.1 Non model-based strategies

The first successful stabilization experiments of real-scale slug-
ging wells reported in Courbot [1996] used a PI controller
to control the 'Riser Base Pressure’ ¢. Since then, numerous
implementation of this control strategy have revealed success-
ful Aamo et al. [2005], Dalsmo et al. [2002], Godhavn et al.
[2005], Havre et al. [2000], Sinegre [2006], Storkaas [2005].
Tuning directives for this controller, derived from a simplified
linear model of the slugging oscillations, can be found in God-
havn et al. [2005].

The PI controller on the bottom pressure exhibits, however, two
major shortcomings. First, as reported in Sivertsen et al. [2010]
and Di Meglio [2011], it reveals sensitive to the moment where
the controller is triggered. More precisely, the controller must
be turned on when the bottom pressure is in the increasing
phase of its oscillations to ensure its efficiency. Besides, it
requires frequent re-tuning due to relatively poor robustness to
changes in operating conditions Di Meglio [2011].

In Hedne and Linga [1990], an alternative control variable is
considered: the difference between the bottom and topside pres-
sures. This control variable is strongly related to the total mass

6 Equivalently, we may refer to this variable as bottom hole, downhole or
bottom pressure
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of liquid in the system (see, e.g., Di Meglio [2011]), which, ac-
cording to various contributions, plays a critical role in the sta-
bility properties of slugging systems Di Meglio et al. [2010a],
Imsland [2002], Siahaan et al. [2005]. In Di Meglio [2011], the
choice of this control variable is shown to outperform the PI
controller on the bottom pressure by allowing stabilization at
operating points corresponding to higher levels of production,
and without any restriction regarding the triggering time.

Both variables mentioned above require the availability of a
bottom pressure sensor. In Sivertsen et al. [2010], non model-
based solutions using topside information only are proposed,
under the form of cascaded PI controllers. Various combina-
tions of sensors are considered among the traditionnaly avail-
able measurements, namely volumetric flow rate, density, mass
flow rate and pressure. The best results are obtained using a
normalized volumetric flow rate measurement as the output
of the inner loop of the cascade, and the outlet valve opening
measurement in the outer loop.

4.2 Model-based strategies

In several contributions, models are used solely to provide an
estimate of the bottom pressure, which is then stabilized by a PI
controller. Such control schemes are described in Aamo et al.
[2005], Eikrem et al. [2004], Sinegre [2006].

Other contributions take advantage of the availability of full-
state information provided by the observers to design more
advanced control laws, taking into account the nonlinearity of
the models. Thus, in Siahaan et al. [2005] and Di Meglio et al.
[2010a], control laws are designed to linearize the dynamics of
a state variable. In Siahaan et al. [2005], several variables of
the Storkaas model are considered, among which the bottom
pressure, the height of liquid at the low-point and the mass of
liquid in the riser. The latter exhibits the best performances in
simulation.

Similarly, in Di Meglio et al. [2010a], Di Meglio [2011], a
control law linearizing the dynamics of the mass of liquid
in the riser is considered. Presented experiments emphasize
the potential of this model-based control law, which performs
better than all considered PI strategies.

5. CONCLUSIONS AND OPEN QUESTIONS

Given the vast array of explored and unexplored possible solu-
tions, and the diversity of industrial setups, picking one strategy
as the best one reveals yet difficult.

The confidence of field practitioners in the easily imple-
mentable PI controller makes it remain the favored solution.
However, comparison of various output variables, especially the
pressure drop over the riser, the inlet pressure of a flowline (see,
e.g., Storkaas [2005]), or mass of volumetric flow rates should
be performed.

Besides, when no bottom pressure is available, it has been
proved in Sivertsen et al. [2010] that no estimate of upstream
information is needed to stabilize slugging systems. Experi-
ments comparing cascaded PI controllers on topside measure-
ments with observer-based approaches should be performed to
evaluate the benefits of estimating full-state information. Also,
a combined approach involving PI controllers cascaded with
observer-based feedback laws could be considered.
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