I. Gordon, F. Dross, V. Depauw, A. Masolin, Y. Qiu et al., Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications, Solar Energy Materials and Solar Cells, vol.95, pp.2-7, 2011.
DOI : 10.1016/j.solmat.2010.11.031

F. J. Henley, Kerf-free wafering: Technology overview and challenges for thin PV manufacturing, 2010 35th IEEE Photovoltaic Specialists Conference, pp.1184-001192, 2010.
DOI : 10.1109/PVSC.2010.5614096

A. Masolin and M. R. Payo, Method for fabricating thin photovoltaic cells, 2012.

B. M. Hillberry, Method for fracturing crystalline materials, p.423, 1975.

D. F. Wilkes, Process for cleaving crystalline materials, 1981.

M. Tanielian, R. Lajos, and S. Blackstone, Method of making thin free standing single crystal films, p.559, 1986.

G. Owens, Method and apparatus for cleaving brittle materials, 2005.

G. Owens, Method for cleaving brittle materials, 2010.

M. Takeguchi, T. Yamamoto, and M. Nakano, Method and apparatus for cutting polycrystalline silicon rods, p.357, 1990.

S. Yamaguchi, Cutting method and apparatus for ingot, wafer, and manufacturing method of solar cell, p.282, 2008.

S. C. Baer, Cleaving wafers from silicon crystals, 2009.

F. Dross, J. Robbelein, B. Vandevelde, E. Van-kerschaver, I. Gordon et al., Stress-induced large-area lift-off of crystalline Si films, Applied Physics A, vol.25, issue.1, pp.149-152, 2007.
DOI : 10.1007/s00339-007-4195-2

F. Dross, E. Van-kerschaver, and G. Beaucarne, Method for the production of thin substrates, 2007.

F. Dross, E. Van-kerschaver, and G. Beaucarne, Method for the production of thin substrates, p.531, 2011.

J. Qian, B. Kersschot, A. Masolin, J. Vaes, D. Frederic et al., Crack initiation for Kerf-Loss-Free wafering, 11th International Conference of euspen, pp.435-438, 2011.

J. Vaes, A. Masolin, A. Pesquera, and F. Dross, SLiM-cut thin silicon wafering with enhanced crack and stress control, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion, p.777212, 2010.
DOI : 10.1117/12.860537

A. Masolin, J. Vaes, F. Dross, J. Poortmans, and R. Mertens, Thermal curing of crystallographic defects on a slim-cut silicon foil, 2010 35th IEEE Photovoltaic Specialists Conference, pp.2180-002183, 2010.
DOI : 10.1109/PVSC.2010.5615856

A. Masolin, J. Vaes, F. Dross, R. Martini, A. Rodriguez et al., Evidence and characterization of crystallographic defect and material quality after slimcut process, MRS Online Proceedings Library, 2011.
DOI : 10.1557/opl.2011.984

R. Martini and A. Masolin, Polymer-induced spalling of silicon, Energy Procedia, p.p. in press, 2012.
DOI : 10.1016/j.egypro.2012.07.111

URL : https://doi.org/10.1016/j.egypro.2012.07.111

L. Mathew and D. Jawarani, Method of forming an electronic device using a separationenhancing species, p.884, 2010.

R. A. Rao, L. Mathew, S. Saha, S. Smith, R. Sarkar et al., A novel low cost 25 um thin exfoliated monocrystalline si solar cell technology, Photovoltaic Specialists Conference (PVSC), pp.37-001504, 2011.
DOI : 10.1109/pvsc.2011.6186244

S. W. Bedell, K. E. Fogel, P. A. Lauro, D. Sadana, and D. Shahrjerdi, Spalling for a semiconductor substrate, 2010.

S. W. Bedell, K. E. Fogel, P. A. Lauro, D. Sadana, and D. Shahrjerdi, Spalling for a semiconductor substrate, 2011.

S. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. Lauro et al., Kerf-Less removal of si, ge, and III-V layers by controlled spalling to enable Low-Cost PV technologies, IEEE Journal, vol.2, pp.141-147, 2012.
DOI : 10.1109/pvsc.2011.6185886

W. P. Mason, Physical acoustics and the properties of solids, 1958.
DOI : 10.1063/1.3060767

J. Hall, -Type Silicon, Physical Review, vol.138, issue.3, pp.756-761, 1967.
DOI : 10.1103/PhysRev.138.A225

J. F. Nye and R. B. Lindsay, Physics Today, vol.10, issue.12, p.26, 1957.
DOI : 10.1063/1.3060200

W. A. Brantley, Calculated elastic constants for stress problems associated with semiconductor devices, Journal of Applied Physics, vol.44, issue.1, pp.534-535, 1973.
DOI : 10.1364/JOSA.11.000233

H. Balamane, T. Halicioglu, and W. A. Tiller, Comparative study of silicon empirical interatomic potentials, Physical Review B, vol.31, issue.4, pp.2250-2279, 1992.
DOI : 10.1103/PhysRevB.31.6184

P. D. Haynes, Linear-scaling methods in ab initio quantum-mechanical calculations, 1998.

B. Bhushan and V. N. Koinkar, Nanoindentation hardness measurements using atomic force microscopy, Applied Physics Letters, vol.7, issue.13, pp.1653-1655, 1994.
DOI : 10.1007/BF00550072

B. Bhushan and X. Li, Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices, Journal of Materials Research, vol.6, issue.183, pp.54-63, 1997.
DOI : 10.1016/0043-1648(95)90051-9

H. Mcskimin, W. Bond, E. Buehler, and G. Teal, Measurement of the Elastic Constants of Silicon Single Crystals and Their Thermal Coefficients, Physical Review, vol.83, issue.5, p.1080, 1951.
DOI : 10.1103/PhysRev.83.1080

Y. A. Burenkov and S. P. Nikanorov, Temperature dependence of the elastic constants of silicon, Soviet physics Solid state, pp.1496-1498, 1974.

C. Bourgeois, E. Steinsland, N. Blanc, and N. F. De-rooij, Design of resonators for the determination of the temperature coefficients of elastic constants of monocrystalline silicon, Proceedings of International Frequency Control Symposium, pp.791-799, 1997.
DOI : 10.1109/FREQ.1997.639192

M. Hopcroft, W. Nix, and T. Kenny, What is the Young's Modulus of Silicon?, Journal of Microelectromechanical Systems, vol.19, issue.2, pp.229-238, 2010.
DOI : 10.1109/JMEMS.2009.2039697

F. Cacho, S. Orain, G. Cailletaud, and H. Jaouen, A constitutive single crystal model for the silicon mechanical behavior: Applications to the stress induced by silicided lines and STI in MOS technologies, Microelectronics Reliability, vol.47, issue.2-3, pp.161-167, 2007.
DOI : 10.1016/j.microrel.2006.09.009

URL : https://hal.archives-ouvertes.fr/hal-00157586

J. Cochard, I. Yonenaga, S. Gouttebroze, M. Mhamdi, and Z. L. Zhang, Constitutive modeling of intrinsic silicon monocrystals in easy glide, Journal of Applied Physics, vol.16, issue.3, pp.33512-033519, 2010.
DOI : 10.1063/1.124652

O. W. Dillon, C. T. Tsai, and R. J. De-angelis, Dislocation dynamics during the growth of silicon ribbon, Journal of Applied Physics, vol.56, issue.5, pp.1784-1792, 1986.
DOI : 10.1063/1.1659058

H. Moon, L. Anand, and S. Spearing, A Constitutive Model for the Mechanical Behavior of Single Crystal Silicon at Elevated Temperature, MRS Proceedings, vol.687, pp.9-15, 2001.
DOI : 10.1016/S1359-6462(99)00428-5

E. Orowan, Problems of plastic gliding, Proceedings of the Physical Society, p.8, 1940.
DOI : 10.1088/0959-5309/52/1/303

A. Arsenlis and D. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density, Acta Materialia, vol.47, issue.5, pp.1597-1611, 1999.
DOI : 10.1016/S1359-6454(99)00020-8

H. Alexander, P. Haasen, D. T. Frederick, H. Seitz, and . Ehrenreich, Dislocations and Plastic Flow in the Diamond Structure, Solid State Physics, pp.27-158, 1969.
DOI : 10.1016/S0081-1947(08)60031-4

F. Delaire, J. Raphanel, and C. Rey, Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations, Acta Materialia, vol.48, issue.5, pp.1075-1087, 2000.
DOI : 10.1016/S1359-6454(99)00408-5

URL : https://hal.archives-ouvertes.fr/hal-00111290

B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, Thermal Conductivity of Ge-Si Alloys at High Temperatures, Physical Review, vol.98, issue.1, pp.44-46, 1962.
DOI : 10.1103/PhysRev.98.940

C. Glassbrenner and G. Slack, Thermal Conductivity of Silicon and Germanium from 3??K to the Melting Point, Physical Review, vol.33, issue.4A, p.1058, 1964.
DOI : 10.1063/1.1717684

W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves, and D. L. Mcelroy, Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300??K, Physical Review, vol.136, issue.3, pp.765-782, 1968.
DOI : 10.1103/PhysRev.136.A1149

K. Yamamoto, T. Abe, and S. Takasu, Thermal Diffusivity of Crystalline and Liquid Silicon and an Anomaly at Melting, Japanese Journal of Applied Physics, vol.30, issue.Part 1, No. 10, pp.2423-2426, 1991.
DOI : 10.1143/JJAP.30.2423

E. Yamasue, M. Susa, H. Fukuyama, and K. Nagata, Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe, Journal of Crystal Growth, vol.234, issue.1, pp.121-131, 2002.
DOI : 10.1016/S0022-0248(01)01673-6

H. Shanks, P. Maycock, P. Sidles, and G. Danielson, Thermal Conductivity of Silicon from 300 to 1400??K, Physical Review, vol.120, issue.5, p.1743, 1963.
DOI : 10.1103/PhysRev.120.782

R. Hull, Properties of crystalline silicon, IET, 1999.

C. Prakash, Thermal conductivity variation of silicon with temperature, Microelectronics Reliability, vol.18, issue.4, p.333, 1978.
DOI : 10.1016/0026-2714(78)90573-5

M. Okaji, Absolute thermal expansion measurements of single-crystal silicon in the range 300?1300 K with an interferometric dilatometer, International Journal of Thermophysics, vol.48, issue.3, pp.1101-1109, 1988.
DOI : 10.1007/BF01133277

H. Watanabe, N. Yamada, and M. Okaji, Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K, International Journal of Thermophysics, vol.25, issue.1, pp.221-236, 2004.
DOI : 10.1023/B:IJOT.0000022336.83719.43

Y. Okada and Y. Tokumaru, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K, Journal of Applied Physics, vol.13, issue.7, pp.314-320, 1984.
DOI : 10.1107/S0021889883010456

C. A. Swenson, Recommended Values for the Thermal Expansivity of Silicon from 0 to 1000 K, Journal of Physical and Chemical Reference Data, vol.12, issue.2, pp.179-182, 1983.
DOI : 10.1063/1.555681

C. St and . John, The brittle-to-ductile transition in pre-cleaved silicon single crystals, Philosophical Magazine, vol.32, issue.6, pp.1193-1212, 1975.

M. Brede and P. Haasen, The brittle-to-ductile transition in doped silicon as a model substance, Acta Metallurgica, vol.36, issue.8, pp.2003-2018, 1988.
DOI : 10.1016/0001-6160(88)90302-1

J. Samuels and S. Roberts, The Brittle-Ductile Transition in Silicon. I. Experiments, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.421, issue.1860, pp.1-23, 1989.
DOI : 10.1098/rspa.1989.0001

P. Hirsch, S. Roberts, and J. Samuels, The Brittle-Ductile Transition in Silicon. II. Interpretation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.421, issue.1860, p.25, 1989.
DOI : 10.1098/rspa.1989.0002

URL : https://hal.archives-ouvertes.fr/hal-00513679

P. Hirsch and S. Roberts, The brittle-ductile transition in silicon, Philosophical Magazine A, vol.17, issue.1, pp.55-80, 1991.
DOI : 10.1080/01418618908221177

URL : https://hal.archives-ouvertes.fr/hal-00513679

A. George and G. Michot, Dislocation loops at crack tips: nucleation and growth??? an experimental study in silicon, Materials Science and Engineering: A, vol.164, issue.1-2, pp.118-134, 1993.
DOI : 10.1016/0921-5093(93)90649-Y

K. Hsia and A. Argon, Experimental study of the mechanisms of brittle-to-ductile transition of cleavage fracture in Si single crystals, Materials Science and Engineering: A, vol.176, issue.1-2, pp.111-119, 1994.
DOI : 10.1016/0921-5093(94)90964-4

P. Warren, The brittle-ductile transition in silicon: The influence of pre-existing dislocation arrangements, Scripta metallurgica, pp.637-642, 1989.
DOI : 10.1016/0036-9748(89)90504-8

P. Hirsch and S. Roberts, Modelling plastic zones and the brittle-ductile transition, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.355, issue.1731, pp.1991-2002, 1997.
DOI : 10.1098/rsta.1997.0101

P. Hesketh, C. Ju, S. Gowda, E. Zanoria, and S. Danyluk, Surface Free Energy Model of Silicon Anisotropic Etching, Journal of The Electrochemical Society, vol.140, issue.4, pp.1080-1085, 1993.
DOI : 10.1149/1.2056201

F. Ebrahimi and S. Hussain, Crack path in single crystals, Scripta metallurgica et materialia, pp.1507-1511, 1995.
DOI : 10.1016/0956-716X(95)00196-3

F. Ebrahimi and L. Kalwani, Fracture anisotropy in silicon single crystal, Materials Science and Engineering: A, vol.268, issue.1-2, pp.116-126, 1999.
DOI : 10.1016/S0921-5093(99)00077-5

J. Gilman, Direct Measurements of the Surface Energies of Crystals, Journal of Applied Physics, vol.106, issue.12, pp.2208-2218, 1960.
DOI : 10.1098/rspa.1939.0150

R. Jaccodine, Surface Energy of Germanium and Silicon, Journal of The Electrochemical Society, vol.110, issue.6, pp.524-527, 1963.
DOI : 10.1149/1.2425806

C. P. Chen and M. H. Leipold, Fracture toughness of silicon, Applied Physics Letters, vol.87, issue.14, p.141912, 1980.

C. Messmer and J. Bilello, The surface energy of Si, GaAs, and GaP, Journal of Applied Physics, vol.22, issue.7, pp.4623-4629, 1981.
DOI : 10.1179/000844375795049997

C. P. Chen and M. H. Leipold, Fracture Mechanics of Ceramics, ch. Crack Growth in Single-Crystal Silicon, pp.285-297, 1986.

S. Bhaduri and F. Wang, Fracture surface energy determination in {1 1 0} planes in silicon by the double torsion method, Journal of Materials Science, vol.21, issue.7, pp.2489-2492, 1986.
DOI : 10.1007/BF01114295

Y. Tsai and J. Mecholsky, Fractal fracture of single crystal silicon, Journal of Materials Research, vol.10, issue.06, pp.1248-1263, 1991.
DOI : 10.1007/BF00611482

K. Hayashi, S. Tsujimoto, Y. Okamoto, and T. Nishikawa, Fracture toughness of single crystal silicon., Journal of the Society of Materials Science, Japan, vol.40, issue.451, pp.405-410, 1991.
DOI : 10.2472/jsms.40.405

Y. Xin and K. Hsia, A technique to generate straight through thickness surface cracks and its application to studying dislocation nucleation in Si, Acta Materialia, vol.44, issue.3, pp.845-853, 1996.
DOI : 10.1016/1359-6454(95)00251-0

J. Hauch, D. Holland, M. Marder, and H. Swinney, Dynamic Fracture in Single Crystal Silicon, Physical Review Letters, vol.26, issue.19, pp.3823-3826, 1999.
DOI : 10.1007/BF01157550

URL : http://arxiv.org/pdf/cond-mat/9810262

J. Swadener and M. Nastasi, Effect of dopants on the fracture toughness of silicon, Journal of Materials Science Letters, vol.21, issue.17, pp.1363-1365, 2002.
DOI : 10.1023/A:1019772717743

A. Fitzgerald, R. Iyer, R. Dauskardt, and T. Kenny, Subcritical Crack Growth in Single-crystal Silicon Using Micromachined Specimens, Journal of Materials Research, vol.17, issue.03, pp.683-692, 2002.
DOI : 10.1557/JMR.2002.0097

J. Tan, S. Li, Y. Wan, F. Li, and K. Lu, Crystallographic cracking behavior in silicon single crystal wafer, Materials Science and Engineering: B, vol.103, issue.1, pp.49-56, 2003.
DOI : 10.1016/S0921-5107(03)00147-8

R. F. Cook, Strength and sharp contact fracture of silicon, Journal of Materials Science, vol.2, issue.120, pp.841-872, 2006.
DOI : 10.1080/14786445108561302

R. Pérez and P. Gumbsch, An ab initio study of the cleavage anisotropy in silicon, Acta Materialia, vol.48, issue.18-19, pp.18-19, 2000.
DOI : 10.1016/S1359-6454(00)00238-X

M. Tanaka, K. Higashida, H. Nakashima, H. Takagi, and M. Fujiwara, Orientation dependence of fracture toughness measured by indentation methods and its relation to surface energy in single crystal silicon, International Journal of Fracture, vol.24, issue.18, pp.383-394, 2006.
DOI : 10.2472/jsms.40.405

Z. Ding, S. Zhou, and Y. Zhao, Hardness and fracture toughness of brittle materials:???A density functional theory study, Physical Review B, vol.75, issue.18, p.184117, 2004.
DOI : 10.1103/PhysRevLett.91.015502

T. Zhu, J. Li, and S. Yip, Atomistic Configurations and Energetics of Crack Extension in Silicon, Physical Review Letters, vol.427, issue.20, p.205504, 2004.
DOI : 10.1016/0921-5093(93)90649-Y

R. Perez and P. Gumbsch, Directional Anisotropy in the Cleavage Fracture of Silicon, Physical Review Letters, vol.41, issue.18, pp.5347-5350, 2000.
DOI : 10.1016/0956-7151(93)90096-B

R. D. Deegan, S. Chheda, L. Patel, M. Marder, H. L. Swinney et al., Wavy and rough cracks in silicon, Physical Review E, vol.42, issue.6, p.66209, 2003.
DOI : 10.1063/1.1660699

D. R. Clarke, The Mechanical Properties of Semiconductors of Semiconductors and Semimetals, ch. Fracture of silicon and other semiconductors, pp.79-142, 1992.

T. Cramer, A. Wanner, and P. Gumbsch, Crack Velocities during Dynamic Fracture of Glass and Single Crystalline Silicon, physica status solidi (a), vol.78, issue.1, pp.5-6, 1997.
DOI : 10.1103/PhysRevLett.78.78

T. Cramer, A. Wanner, and P. Gumbsch, Energy Dissipation and Path Instabilities in Dynamic Fracture of Silicon Single Crystals, Physical Review Letters, vol.21, issue.18, pp.788-791, 2000.
DOI : 10.1007/BF01114295

D. Sherman and I. Be-'ery, From crack deflection to lattice vibrations???macro to atomistic examination of dynamic cleavage fracture, Journal of the Mechanics and Physics of Solids, vol.52, issue.8, pp.1743-1761, 2004.
DOI : 10.1016/j.jmps.2004.02.004

D. Sherman, Macroscopic and microscopic examination of the relationship between crack velocity and path and Rayleigh surface wave speed in single crystal silicon, Journal of the Mechanics and Physics of Solids, vol.53, issue.12, pp.2742-2757, 2005.
DOI : 10.1016/j.jmps.2005.07.001

J. Fineberg and M. Marder, Instability in Dynamic Fracture, 1999.

D. Holland and M. Marder, Cracks and Atoms, Advanced Materials, vol.11, issue.10, pp.793-806, 1999.
DOI : 10.1002/(SICI)1521-4095(199907)11:10<793::AID-ADMA793>3.0.CO;2-B

R. Thomson, C. Hsieh, and V. Rana, Lattice Trapping of Fracture Cracks, Journal of Applied Physics, vol.13, issue.8, pp.3154-3160, 1971.
DOI : 10.1088/0959-5309/59/2/305

B. R. Lawn, An atomistic model of kinetic crack growth in brittle solids, Journal of Materials Science, vol.4, issue.3, pp.469-480, 1975.
DOI : 10.1007/BF00543692

M. Marder, Molecular dynamics of cracks, Computing in Science & Engineering, vol.1, issue.5, pp.48-55, 1999.
DOI : 10.1109/5992.790587

N. Bernstein and D. W. Hess, Lattice Trapping Barriers to Brittle Fracture, Physical Review Letters, vol.421, issue.2, p.25501, 2003.
DOI : 10.1016/0022-5096(94)90013-2

H. , Precision measurement of the surface acoustic wave velocity on silicon single crystals using optical excitation and detection, The Journal of the Acoustical Society of America, vol.95, issue.2, p.1158, 1994.
DOI : 10.1121/1.408473

Y. Xu and T. Aizawa, Leaky pseudo surface wave on the water???Si(110) interface, Physics Letters A, vol.260, issue.6, pp.512-515, 1999.
DOI : 10.1016/S0375-9601(99)00571-X