Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Periodic inputs reconstruction of partially measured linear periodic systems

Abstract : In this paper, the problem of inputreconstruction for the general case of periodiclinearsystems driven by periodicinputs is addressed where x(t)∈Rn and A(t), A0(t), and C(t) are T0-periodic matrices and w is a periodic signal containing an infinite number of harmonics. The contribution of this paper is the design of a real-time observer of the periodic excitation w(t) using only partial measurement. The employed technique estimates the (infinite) Fourier decomposition of the signal. Although the overall system is infinite dimensional, convergence of the observer is proven using a standard Lyapunov approach along with classic mathematical tools such as Cauchy series, Parseval equality, and compact embeddings of Hilbert spaces. This observer design relies on a simple asymptotic formula that is useful for tuning finite-dimensional filters. The presented result extends recent works where full-state measurement was assumed. Here, only partial measurement, through the matrix C(t), is considered.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : François Chaplais <>
Soumis le : mardi 18 septembre 2012 - 12:35:11
Dernière modification le : jeudi 24 septembre 2020 - 17:04:18



Jonathan Chauvin, Nicolas Petit. Periodic inputs reconstruction of partially measured linear periodic systems. Automatica, Elsevier, 2012, 48 (7), pp.1467-1472. ⟨10.1016/j.automatica.2012.05.020⟩. ⟨hal-00733283⟩



Consultations de la notice