
Proceedings of the
4th International Conference on Information Systems, Logistics and Supply Chain

CREATIVE LOGISTICS FOR AN UNCERTAIN WORLD
ILS 2012 – Quebec (Canada), August 26-29

Game theoretic contribution to horizontal cooperation in logistics

X.Xu1,2,∗, S.Pan1 , E.Ballot1

1 CGS, Mines ParisTech–France ({xiaozhou.xu, shenle.pan, eric.ballot}@mines-paristech.fr)
2 CAOR, Mines ParisTech–France (xiaozhou.xu@mines-paristech.fr)

Abstract : Horizontal cooperation in logistics was proved globally advantageous, but we see only few realizations until
now. The main obstacle to the successful implementation of horizontal cooperation is the absence of appropriate cooperation
decision making model, consisting of the detailed cooperation process, the optimization model, and the stable-and-fair gain
sharing mechanism. In this paper, we propose a practical cooperation decision making model for the realization of horizontal
logistics cooperation scheme. This model is a decision process integrating an optimization tool and a game-theoretic
approach to find a feasible allocation rule, and stable coalitions related to coalition structures issue. We propose a weighted
allocation rule that takes bargaining power, contribution and core stability into account, and generalize it in games with
coalition structure. Then we investigate related stability issue under two different cooperation patterns. At the end, we present
a case study of France retail supply network, which verifies the cooperation model we proposed.
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1 Introduction

Horizontal cooperation in logistics was proved efficient
to reduce global cost and improve the performance level
(Cruijssen et al., 2007; Pan et al., 2011). However, de-
spite these advantages, horizontal cooperation is not con-
siderably employed in logistics (Muir, 2010). One main
obstacle in the implementation of horizontal cooperation is
the absence of an appropriate cooperation decision making
model. In this paper we use the cooperative-game-theoretic
approaches to facilitate the decision making. The coopera-
tive game theory investigates how players interact with each
other in a cooperative relationship, and provides many ap-
proaches to fair profit allocation and stable coalition forma-
tion, which are important components in the cooperation
model. Therefore, we use this approach to build a hori-
zontal cooperation model, highlighting its complexity and
possible drawbacks.

The contribution of this paper is as follows. At first, we
propose a practical cooperation model, which is a detailed
cooperation process consisting of several decision-making
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levels. Secondly, we introduce a practical profit allocation
scheme that takes core stability, bargaining power and con-
tribution into account. Finally, we model a supply-chains-
pooling game with cooperation cost consideration as a co-
operative game with Coalition Structure (CS), then investi-
gate relative profit allocation and CS stability issues.

This paper is organized as follows. In Part 2, we present
the questions raised by horizontal cooperation in logistics
and propose a general cooperation model. In Part3, game-
theoretic approaches are reviewed to establish a theoretic
foundation of the essential part in the cooperation model:
game-theory-based sharing mechanism. A specific cooper-
ation model for supply chains pooling scheme is proposed
in Part 4. Two most important questions: profit alloca-
tion and stability are identified. In Part 5, we investigate
the profit allocation, and then propose a practical weighted-
core-stable allocation rule and generalize it in games with
CS. In Part 6, we examine the coalition stability under two
cooperation patterns. A case study of French retail supply
chains is presented in Part 7. Then in Part 8, we conclude
the work.
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2 Questions raised by horizontal co-
operation in logistics

2.1 Horizontal cooperation in logistics

A great emphasis was put on cooperation in supply chains,
but mostly between suppliers and customers, a practice also
known as vertical cooperation. Since few years another
type of cooperation is studied and experienced within sup-
ply chains: horizontal cooperation. This form of coopera-
tion takes place between companies operating at the same
level of market and it requests them to share private in-
formation and resources in logistics. The aim is to im-
prove the efficiency in logistics, for example reduce logis-
tics cost (Cruijssen et al., 2007) or reduce environmental
impact caused by transportation activities (Pan et al., 2011).

In this paper, we focus on transportation cost aspect. It’s
proved in the literatures that the horizontal cooperation in
logistics can result in a 10% or higher percentage of cost
reduction in transportation (Groothedde et al., 2005; Ergun
et al., 2007; Pan et al., 2011). Considering the size of this
market, it’s a huge stake.

To study the transportation problem, we employ here the
supply chains pooling concept that is a horizontal cooper-
ation approach, which defines a common logistics system
involving shippers of different supply chains to increase the
supply chain efficiency. The supply chains pooling cooper-
ation scheme is based on the optimization tool that is first
developed in the dissertation of Pan (2010). The main idea
of this optimization scheme is to strengthen the logistics
cooperation in pooling among different companies, then to
evaluate how can the logistics efficiency be enhanced to full
extent in a pooled network.

The supply chains pooling is based on the pooling of lo-
gistics resources in a system illustrated here by a classic
supply chain network for retail distribution, in the top part
of figure 1. The pooled system described in the lower part
of figure 1 shows, on the other hand, the grouping of flows.
The advantage of this type of system was shown in Pan et al.
(2011).

The cost optimization of the logistics network was studied
as a transportation problem, formulated by a mixed linear
integer optimization problem. For more details of imple-
mentation, readers who are interested can refer to Pan et al.
(2011).

This optimization tool can help cooperators to find an op-
timal cooperation scheme, thus create a common gain that
will be shared among them. However, the coalition con-
struction and the profit sharing issues are not yet investi-
gated in the studies related to logistics pooling. It is easy to
see that appropriate gain sharing solution needs to be con-
structed at first place to give all cooperators incentive to
take part in such cooperation. We investigate the coopera-

Figure 1: Illustration of the supply chains pooling (Ai: Supplier
i; Rj: Retailer j;WH: Warehouse; DC: Distribution Center; POS:
Point Of Sale)

tive game theory in the following sections for the construc-
tion of a gain sharing mechanism.

2.2 A need for a general cooperation model

Despite its important advantages, horizontal cooperation is
not yet considerably employed in logistics. A survey made
in Flanders (Cruijssen et al., 2007) points out the difficulties
for the implementation: find a reliable leader and construct
a fair allocation of benefit. Therefore, to answer the require-
ment of a cooperation-aiding tool, we construct a coopera-
tion model, which is a cooperation process, to facilitate the
implementation of the horizontal logistics cooperation.

Here, we present a general model that can be applied in
many fields to cooperation issues. This model is illustrated
in figure 2.

At the beginning of the cooperation procedure, we have got
a set of cooperation candidates who have incentive to coop-
erate with others. Then we evaluate the cooperation possi-
bilities among all candidates to separate them into several
"cooperation groups", for example groups of companies in
different regions. Depending on the cooperation content, a
consensus specifying related cooperation organization, co-
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Figure 2: General cooperation model

ordination details and profit sharing scheme should be iden-
tified in the step 2 as the basis of cooperation. The step 2 is
the most important one in this model, and the cooperation
mechanism specified in this step should consist of an opti-
mization model to find the optimal cooperation scheme and
a gain sharing mechanism to propose fair sharing scheme.
Based on the framework thus defined, there will always be
some indefinite area left to bargaining. So in the step 3,
cooperators try to establish an explicit contract by bargain-
ing. In step 4, there are two possibilities: agreement be-
ing made, cooperation relationship contracted; or bargain-
ing failed, someone in the cooperation group deviates, the
others move back to step 2.

Thus there arise the vital question on gain sharing, the an-
swer to which will complete this cooperation model. That
is, what kind of gain sharing mechanism should be con-
structed to facilitate the implementation of the coopera-
tion? In the business reality, gain sharing mechanisms
based on identical unit delivery tariff and proportional al-
location rules are widely applied (Cruijssen et al., 2007).
However, the considerations of the cooperators’ real con-
tribution and their bargaining powers are missing in these
practical sharing mechanisms, which is not fair and may
result in the instability of the coalition thus formed. For the
construction of a stable-and-fair sharing mechanism, we in-
vestigate the cooperative game theory in the rest of this pa-
per.

3 Game theory literature review

As to Hart et al. (1997), the game theory is divided into
two main approaches: the non-cooperative and the coop-
erative game theory. The cooperative game theory can be
applied to the case where players can achieve more ben-

efit by cooperating than staying alone. The gain sharing
issue is intensively investigated in the cooperative game
theory, therefore we adopt cooperative-game-theoretic ap-
proaches in constructing the sharing mechanism. Nagara-
jan and Sosic (2008) divided cooperative game approaches
into multivalued-mapping approaches and single-valued-
mapping approaches. Multivalued-mapping approaches,
such as core and coalition structure core (CS core), give
a set of value allocations that conform some general prop-
erties of feasible solution, usually serves as stability criteri-
ons; and single-valued-mapping approaches, such as Shap-
ley value and compromise value, try to identify specific al-
location by a set of axioms, usually serves as allocation
rules.

Shapley (1953b) introduced his famous Shapley value (SV),
which is a representative allocation rule that conforms five
axioms: individual fairness, efficiency, symmetry, additiv-
ity, and null player. Symmetry axiom means that all play-
ers in the game are treated equally. But in business real-
ity, companies possess different bargaining power, which
comes from company size, market share or some other
aspects, so it will be more realistic, weighted allocation
rules that take this into account. Monderer and Samet
(2002) construct a explicit theoretical framework for vari-
ations on SV, and the weighted Shapley value (WSV) in-
troduced by Shapley (1953b,a) alongside the standard SV
is re-examined in this framework. In WSV, the symmetry
axiom is relaxed by considering players’ different weights,
which can be regarded as bargaining powers in the cooper-
ative game investigated here. This allocation rule is axiom-
atized by Kalai and Samet (1987). Monderer et al. (1992)
prove the monotonicity of the WSV in convex game, but
this does not hold in non-convex game. The monotonic-
ity mentioned here means that when a player’s weight is
increased, while keeping the other players’ weights un-
changed, the player’s payoff in the given game increases.
Haeringer (2006) propose another way to introduce play-
ers’ weights in the SV, which is named modified weighted
Shapley value (MWSV) and is monotonic with respect to
player weights. The main drawback of this work is that
it may allocate negative payoffs, thus non-stable in coop-
erative games. Dai and Chen (2011) investigated a carrier
cooperation problem. They proposed several profit alloca-
tion mechanism that combine core solution concept with
SV, proportional allocation and contribution-based alloca-
tion. Inspired by this, we propose a contribution-and-power
weighted value, which take player bargaining power, SV
and core stability into consideration. This allocation rule is
detailed in Part 5.

The Multivalued-mapping concepts, according to their non-
uniqueness, often serve as the stability criterion. For ex-
ample, the core and the CS core may be the best-known
stability concepts. They address the stability of the grand
coalition and an arbitrary CS respectively. The core, firstly
introduced by Gillies (1959) contains all stable allocations,
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which guarantee that there is no coalition can benefit by
jointly deviating from the grand coalition. Its main draw-
back is that, it may be an empty set. Aumann and Dreze
(1974) generalize the core solution concept to games with
CS, i.e. the CS core. Similarly, given a CS, the CS core
contains all allocations that can guarantee no incentive to
deviate from this CS. Aumann and Dreze (1974) prove that
a necessary condition for a game with CS have a non-empty
CS core is that the CS formed is the optimal one. "Optimal"
means this CS can generate highest global profit.

These solution concepts are criticized to be myopic, since
they take into account only one-step deviation. Suppose
a coalition structure denoted CS, and there is a coalition
Z who can be better off by deviating from CS. For a my-
opic view of stability, CS is not stable. However, we should
consider further deviations. Any deviation would trigger a
sequence of deviations, which may end with an outcome
where the initial deviators, members of Z, receive lower
payoffs than in CS. In such case, if members of Z were far-
sighted enough, they would prefer to not deviate in the first
place. Thus CS, non-stable in the myopic view, may prove
to be stable in farsighted sense.

A solution concept that examine the coalition stability by
farsighted is largest consistent set (LCS), introduced by
Chwe (1994). It is criticized to be too "inclusive", so Xue
(1998) and Mauleon and Vannetelbosch (2004) proposed
refinement of LCS in their works. Konishi and Ray (2003)
proposed a dynamic approach to CS stability, the equilib-
rium process of coalition formation (EPCF). This approach
can verify the stability of CS core elements by farsighted
arguments, while in the other hand, can support some far-
sighted stable CS, which is not in the CS core, as stable
outcomes.

We have briefly reviewed the game theoretic approaches ap-
plied for fair allocation and stability evaluation. In Part 4,
we will introduce a cooperation model to investigate the
implementation issues in logistics cooperations.

4 A practical logistics cooperation
model

4.1 Cooperation model for supply chains
pooling

We redefined following model in figure 3 for the implemen-
tation of supply chains pooling, which is of more explicit
details on each decision level. In this cooperation model,
a cooperation coordinator, working as organizer and com-
munication hub, will play a crucial role. It is also a side
payment implementer, which can ensure the profit alloca-
tion. The most important and complicated step is the step
2, where the optimization tool and related game theoretic
approaches are applied to establish a consensus as the base

Figure 3: A specific cooperation model for supply chains pooling

of further bargaining. We use optimization tool to evaluate
possible profit that can be generated by all possible coali-
tions, then use game theoretic approaches to find a solu-
tion for corresponding pooling game. In the game theo-
retic aspect, we mainly focus on weighted profit allocation
schemes and CS stability. We also make some suggestion
on the application of farsighted stability concepts.

4.2 Scheme of logistics cooperation game in-
vestigation

To apply this cooperation model to supply chains pooling
game, at first we need to identify different problems that
may be encountered. The game G = (N, v) is said to be
super-additive if the characteristic function v satisfies equa-
tion (1)(Shapley, 1971).

v(S) + v(T ) ≤ v(S∪T ), ∀S, T ⊂ N andS∩T = ∅ (1)

It signifies that the two separate coalitions can create at least
as much value if they form one large coalition.

Consider two supply-chains-pooling cooperation patterns:
the limited cooperation and the long-term, in-depth coop-
eration. In modeling these two cooperation relationships
as cooperative games, we note that there is no need to in-
vest heavily for specific warehouses, standardized container
and trucks, and dedicated information system in the limited
cooperation, such as the potential-lane cooperation intro-
duced by Institute of Grocery Distribution (2007), or a com-
promised version of supply chains pooling that is suitable
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for small and median sized enterprises, where efficiency
promoting is constrained by limited investment. In such
kind of cooperations, the cooperation cost is negligible and
it can be modeled as a super-additive game, since if any
two coalitions of players S and T cooperate to optimize
their pooling scheme, at worst, while there is no further
pooling possibility between S and T , it will still guarantee
v(S) + v(T ) = v(S ∪ T ), which satisfy super-additivity.

And in the long-term, in-depth cooperation, related invest-
ment is necessary for the efficiency of the cooperative net-
work and the payment to the coordinator. That means, for
participating in the cooperation, one should first pay the co-
operation cost. As cooperation cost increases to a certain
level, the game become non-superadditive, which means
that, in this situation, some players may gain less than the
cooperation cost they paid if they take part in cooperation.
Such a game is no longer super-additive, so the players ei-
ther cooperate in separated coalitions (the most profitable
coalitions will form separately), or stay alone (for the play-
ers who cannot generate more profit than cooperation cost).
We present an investigation scheme in figure 4.

Figure 4: Scheme of logistics cooperation game investigation

As figure 4 shows, there are two substantial questions lie in
the cooperative game theory: profit allocation and coalition
(CS) stability. These two questions will be investigated in
following two sections.

5 Profit allocation according to dif-
ferent bargaining powers

5.1 Preliminaries on cooperative game the-
ory and weighted allocation rules

A cooperative game can be denoted by G = (N, v), where
N is the set of all players and v is the characteristic function

which is the difference between the logistics cost before
cooperation and that after cooperation, i.e., v(S) = A(S)−
M(S). Coalition S is a subset of N . For each S ⊆ N , we
have v(S) which gives the common profit created by S.
An allocation x is a vector with elements xi that indicate
the corresponding payoff of each player. A payoff vector
satisfies efficiency if

∑
i∈N xi = v(N). For a coalition, we

have x(S) =
∑

i∈S xi . Further, an allocation x is called an
imputation if x satisfies xi ≥ v(i), ∀ i ∈ N and efficiency.
The set of all imputations of a game G = (N, v) is denoted
by I(N, v).

The core of game G = (N, v), introduced by Gillies
(1959), is defined by equation 2.

Core(N, v) = {x|
∑

xi∈I(N,v)

xi = v(N) and

x(S) ≥ v(S),∀S ⊆ N, x ∈ I(N, v)}
(2)

A cooperative game with coalitional structure can be de-
noted by G = (N, v, P ), where CS P is a partition of
N into coalitions, i.e., P = {S1, S2, ..., Sk} where for
all l ∈ {1, 2, ..., k},we have Sl ⊆ N,

⋃k
l=1 Sl = N , and

(i 6= j) → Si ∩ Sj = ∅. Note that we also take {N} as
a special CS. The core of G = (N, v, P ), introduced by
Aumann and Dreze (1974), is defined by equation 3.

CS core(N, v, P ) = {x|
∑
i∈Sl

xi = v(Sl), ∀Sl ∈ P,

and x(S) ≥ v(S), ∀ (S ⊆ N, x ∈ I(N, v))}
(3)

A best-known weighted value allocation rule may be the
weighted Shapley value (WSV). In this allocation rule,
Shapley proposes to model players’ bargaining power
through weights. All games can be decomposed as a lin-
ear combination of unanimity games: v =

∑
S⊆N aSuS ,

where aS is the coefficient of unanimity game uS . The SV
is an equal allocation of unanimity games’ value to play-
ers, i.e., SVi(v) =

∑
S3i

aS

|S| ; while the WSV is a weighted
allocation according to the weights w assigned to players,
i.e., WSVi(v, w) =

∑
S3i

aSwi∑
j∈S wj

.

However, as Owen (1968) has shown, the weights in the
construction of WSV cannot be interpreted as a measure
of power, but players’ delay to reach the grand coalition,
which means it is not sure that as one player’s weight in-
creases while keeping other players weights unchanged,
if his payoff will increase. Haeringer (2006) proposed a
new weighted scheme for the SV, which generate different
sets of bargaining weights to divide the worth of unanim-
ity games, depending on whether the unanimity game co-
efficient is positive or negative. The main drawback of this
allocation rule is that it may allocate negative payoffs. Con-
sidering the supply chains pooling game investigated in this
paper, we proposed a new allocation rule in following sec-
tion.
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5.2 A practical allocation rule with both con-
tribution and bargaining power consider-
ation

We suppose that a fair profit allocation rule in the supply
chains pooling game should take following factors into con-
sideration: contribution to the common profit, bargaining
power and stability. Since the SV is the weighted aver-
age marginal contribution of player, so it can be regarded
as the measure of players’ contribution to the common
profit. Bargaining power should be modeled into the con-
struction of such a fair allocation rule by weight, so that
with the player’s weight increasing while that of the oth-
ers unchanged, his payoff increases. And at last, the al-
location rule integrates stability consideration alongside its
construction. Thus, we propose a practical weighted allo-
cation rule, named contribution-and-power weighted value
(CPWV), computed by following linear programming (LP)
(equations (4a)–(4c)).

MIN : θ

s.t. :
xi
siwi

− xj
sjwj

≤ θ,∀ i, j ∈ N (4a)∑
i∈S

xi ≥ v(S),∀S ⊂ N (4b)∑
i∈N

xi = v(N). (4c)

The si in this LP is the SV of player i. wi is the factor
denotes the bargaining power of player i, for example, i’s
total weight/volume of goods transported in this coopera-
tive logistics system, i’s annual revenue, etc. Since in the
step 1 in the cooperation model, only non-dummy players
will be selected into cooperation groups, and the bargaining
power factors are positive, which imply si > 0 and wi > 0.
This LP can identify a payoff vector x that minimize the
maximum difference between any two players’ payoff rates
xi

siwi
.

From the LP of CPWV, we can easily prove that CPWV of
a game with non-empty core satisfies following axioms:

Symmetry. If two players i and j that wi = wj

can be interchanged without changing any v(S), then
xi(v, CPWV ) = xj(v, CPWV ).

Efficiency.
∑

i∈N xi = v(N).

Individual rationality. xi ≥ v(i), ∀ i ∈ N .

Collective rationality.
∑

i∈S xi ≥ v(S), ∀S ⊂ N .

Weak monotone. As player i’s weight increases while the
other players’ weight unchanged, i’s payoff does not de-
crease.

5.3 Generalization of CPWV in games with
CS

We generalize CPWV in games with CS (CS CPWV) by in-
tegrating the SV in games with CS (CS SV) introduced by
Aumann and Dreze (1974) and the CS core solution con-
cept. The CPWV with CS is identified by following LP
(equations (5a)–(5c)).

MIN : θ

s.t. :
xi
s
′
iwi
− xj
s
′
jwj
≤ θ,∀ i, j ∈ Sk, ∀Sk ∈ P (5a)∑

i∈S
xi ≥ v(S),∀S ⊂ N (5b)∑

i∈Sk

xi = v(Sk).∀Sk ∈ P (5c)

In this LP, s
′

i is the CS SV of player i CPWV with respect
to a given CS P , and Sk is a coalition in the CS P . To
implement this allocation rule, at the beginning of step 2,
an appropriate CS should be fixed, then the coalition Sk

that v(Sk) = 0 should be excluded from this cooperation
group to make sure that s

′

i > 0, ∀ i ∈ N .

Similarly, we can prove that CS CPWV of a game in coali-
tional form with non-empty CS core satisfies symmetry, ef-
ficiency, individual rationality, collective rationality, and
weak monotone axioms.

In Part 5, we proposed a practical allocation rule that takes
into account bargaining power, contribution and core stabil-
ity. In next section, we will discuss related stability issues
based on the cooperation model and supply chains pooling
background.

6 Stable coalition formation in sup-
ply chains pooling game

6.1 Equilibrium process of coalition forma-
tion

Konishi and Ray (2003) introduces a dynamic approach to
the stability of CS, named equilibrium process of coali-
tion formation (EPCF). Denote the set of all possible CS
by CS, the process of coalition formation (PCF) is a
transition probability p : CS × CS → [0, 1] (so that∑

CSk∈CS p(CSi, CSk) = 1, ∀CSi ∈ CS). Based on
a fixed allocation rule, a PCF p induces a value function
vi(CSk, p), which is used to evaluate farsighted players’
CS preference. A PCF is equilibrium if transition prob-
ability and players’ preference are consistent in this PCF.
EPCF can be interpreted in the following way. A PCF in-
duces value function vi(CSk, p) based on the given alloca-
tion rule, while the value function, interpreted as players’
farsighted estimation of total payoff throughout the PCF,
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make players have incentives to move to profitable CS ac-
cording to their preference, no matter if such moves are
consistent or not with the PCF. An EPCF is such an equi-
librium: EPCF p∗ can induce a value function that can in
turn ensure this EPCF.

Denote by P the set of all PCFs, they construct a set map-
ping φ : P → P , and prove by Kakutani fixed point theo-
rem that a fixed point p∗ ∈ φ(p∗) exists and is an EPCF.
In such an EPCF, if there exists absorbing state (or CS)
CSi that p(CSi, CSi) = 1, which means that no farsighted
players have incentive to deviate, we can confirm that CSi

is a stable CS.

6.2 Coalition stability in the limited-
cooperation pooling game

In a limited-cooperation pooling game, since there is negli-
gible cooperation cost, so the game is super-additive and the
grand coalition can achieve the highest global profit. How-
ever, whether the core of a super-additive supply chains
pooling game is non-empty is still uncertain, even though
according to real-world case study experiences that by co-
operating in the grand coalition players can get much higher
payoffs than in any sub-coalition, we estimate this game
would have non-empty core in most cases. But there is
another tactical consideration in this specific cooperation
modality that can serve as argument for players’ grand-
coalition preference, which is the possibility to increase
freight frequency arising from the cooperation among a
large quantity of players. We evaluate only the transporta-
tion cost reduction in the optimization model, based on pe-
riodical flow of goods. The cooperators will realize that be-
sides the transportation cost reduction, an increased freight
frequency is also an obvious advantage of the supply chains
pooling, which may reduce the storage cost and the leading
time of deliveries. So it may be more preferable to stay in
a cooperation relationship among as many cooperators as
possible, rather than to deviate. So the grand coalition can
still be stable even the core is empty.

When the core of a supply chains pooling game is empty,
we need to consider another profit allocation rule. Béal
et al. (2008) proved that, for any super-additive game, its
SV is a stable imputation either in the core or in the far-
sighted stable sets, so SV in this case can be a reasonable
suggestion for players’ further bargaining in step 3.

6.3 CS stability in the long-term pooling
game

In this section, we investigate the long-term pooling game
under two different assumptions: full-cooperative and self-
interested players. In a full-cooperative game, the play-
ers have no incentive to deviate from a CS that optimizes

the performance of the whole cooperation group. Under
full cooperation assumption, the optimal CS will be imple-
mented, and the profit allocation will base on the optimal
CS. Rahwan and Jennings (2008) developed an improved
dynamic programming algorithm to find an optimal CS.

When the pooling game has a non-empty CS core, the CS
CPWV can be applied to propose a stable allocation. When
the CS core is empty, some other allocation rules, e.g., CS
SV and CS nucleolus, can be referred to as a base of further
bargaining.

In reality, usually the full cooperation assumption cannot
be fulfilled. Players try to maximize their own profit, rather
than global performance. It is in this situation the CS sta-
bility will be investigated.

Firstly, we consider a supply chains pooling game with a
non-empty CS core. From the myopic point of view, CS
core is a credible stability judgment. It is the set of all
imputations that no player can benefit by deviation. Au-
mann and Dreze (1974) showed that a necessary condition
for non-emptiness of the CS core is that the CS formed is
the optimal CS. Since the CS CPWV contains in its defini-
tion the CS-core stability, we can conclude that, for a game
with non-empty CS core, the CS CPWV is a stable alloca-
tion rule. We can also confirm the farsighted stability of CS
core elements by EPCF approaches. A PCF is determinis-
tic if p(CSi, CSj) ∈ {0, 1}, ∀CSi, CSj ∈ CS. Let xCS

i

denote i’s payoff in CS, a strong core state is a CS such
that there is no coalition S with xSi ≥ xCS

i , ∀ i ∈ S and
for at least one player, xSi > xCS

i . Konishi and Ray (2003)
prove that, if CS∗ is a strong core state of a characteristic
function, then with discounter factors big enough, there ex-
ist a deterministic EPCF with CS∗ as its unique absorbing
state. Assume that there is a CS core element xCS that is
not a strong core state. This induces that there is a S such
that x

′S
i ≥ xCS

i , ∀ i ∈ S andx
′S
i∗ > xCS

i∗ .
∑

i∈S x
′S
i >∑

i∈S x
CS
i follows, which induces v(S) >

∑
i∈S x

CS
i ,

which is contradictory to CS core element property. So CS
CPWV, as CS core element, is also farsighted stable.

Secondly, we consider a pooling game with empty CS core.
In that case, fix a specific allocation rule agreed by all play-
ers, the related EPCF could support non-core element as
stable state. But to find this EPCF, specific algorithm for
computing fixed point in this model should be developed.
Another solution is also to use the optimal CS and arbitrary
allocation rule, e.g., CS SV, as the base of further bargain-
ing.

xxxzhz
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7 Horizontal logistics cooperation:
case study

7.1 Presentation of the supply chains pooling
game

The case study in this work is conducted with real flows
data provided by Club Déméter (the association of ma-
jor logistics players in France, www.club-demeter.fr). This
support enables us to conduct studies on the basis of a real
database of French retail supply chains.

From the database provided by partners, we chose four
neighboring suppliers who delivery to the distribution cen-
ters of a common retailer. Since the supply chains pool-
ing is the cooperation among suppliers and retailer, so we
can easily imagine that the supplier in this case will claim
part of the profit obtained by pooling. Therefore, the grand
coalition N should be defined as N = s1, s2, s3, s4, r,
where s1, s2, s3, s4 are four suppliers and r is the retailer
in this case study. The related flows of these 5 players,
as listed in table 1, are determined from weekly records
over a 33 - week horizon. The flows can be seen as the

Table 1: Flow of 4 suppliers and 1 retailer

measure of their scales of operation and the pooling oppor-
tunity they provided, thus we use the related flows as the
weights in the pooling game. We define the coalitions that
contain at least 2 suppliers and 1 retailer the valid coali-
tion, since only in such coalition the cooperation relation-
ship lies. All non-valid coalitions can be regarded as sin-
gleton status. The characteristic function v is defined as
v(S) = B(S)−M(S)−CC(S), where B(S) is the trans-
portation cost of coalition S before pooling, M(S) is trans-
portation cost after pooling and CC(S) is the cooperation
cost of coalition S.

7.2 Case study

At first, we investigate a limited-cooperation pooling game,
where CC(S) = 0 for all coalitions. The coalition prof-
its of all valid coalitions, optimal coalition and the CPWV
allocation (when w = {77, 714, 55, 63, 909}) is listed in
the table 2. Four suppliers and the retailers are denoted by
1, 2, 3, 4 and r in this table. The CPWV allocates global
profits to players according to their contributions and bar-
gaining weights, while in the same time satisfies the core
stability. Therefore it is a reasonable suggestion for further

Table 2: The limited-cooperation pooling game solution

bargaining.

Secondly, we present how does cooperation cost make a dif-
ference in the long-term pooling game based on the limited-
cooperation pooling game investigated. We define the co-
operation cost as a linear function CC(S) of the valid-
coalition scale |S|:

CC(S) =

{
0, if |S| ≤ 2 or r /∈ S
cc · |S|. if |S| ≥ 3 and r ∈ S (6)

This cost function represents the investment required for all
participants. In the equation 6, cc is a constant represent-
ing the linear cost rate. When cc = 0 ¤, it is the same
as the limited-cooperation pooling game. As cc increases,
coalitions’ profits decrease. When cc exceeds someone’s
marginal contribution to the grand coalition, it will be out
of the grand coalition, keeping singleton or form another
coalition with others, where their marginal contribution to
this coalition can support the cooperation cost. And at the
end, when cc increases to a level that makes none of the
players in the cooperation group feel it’s profitable to coop-
erate, the optimal CS will be singletons. In this 4-supplyer-
and-single-retailer game, when cc > 530 ¤, the grand
coalition is no more stable, and when cc > 1446¤, players
tend to singletons. We present the CS profits, optimal CS
and the CPWV allocation (based on the same weight vec-
tor) when cc = 600 ¤in table 3. The allocation computed

Table 3: Long-term pooling game solution

is CS core stable.

Note that, in this case study, we have adopted arbitrarily
the weight vector and the cooperation cost function. It is
just for giving an example, to show how this cooperation
model works. By adopting other weight vectors and other
cooperation cost functions, results that may fit better the
reality can be found, but the essential will always be the
same.
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8 Conclusion

In this paper, we proposed a practical cooperation decision
making model, which can be implemented step by step for
horizontal logistics cooperation. This model is constructed
by following components: a decision process as the out-
line, optimization model as cooperation potential evalua-
tion tool, game-theoretic approaches as gain sharing mech-
anism, and management details as coordinator of all above
components.

A practical weighted allocation scheme, the contribution-
and-power weighted value, is proposed and generalized in
game with CS. We investigated the related coalition (CS)
stability under different cooperation patterns. By a case
study of French retail supply network, we justified its fair-
ness and stability.

The proposed decision process highlights the complexity
of this process and proposes solutions to identify possibly-
overcome obstacles to cooperation partners. This method-
ology gives guide lines to coordinator and let also margin
for bargaining. The game theory is used as a framework to
help partners to reach an agreement.

The main drawback of this cooperation model is the lack
of flexibility. The requirement of mid-term commitment
may make players hesitate to cooperate. And in examining
pooling game with cooperation cost, when the CS core is
empty, some other allocation rules and farsighted stability
concepts will be needed for providing reasonable sugges-
tions for further bargaining.
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