S. J. Agbolosu-amison, B. Park, I. Yun, ]. R. Herring, A. Hofleitner et al., Comparative evaluation of heuristic optimiza- 534 tion methods in urban arterial network optimization Estimating arterial traffic conditions Short-term traffic flow forecasting of 623 urban network based on dynamic STARIMA model, 12th Intelligent Transportation Proceedings of the 12th International 624 IEEE Conference on Intelligent Transportation Systems M. Pasquier, and B. Lim. POP-TRAFFIC:A Novel Fuzzy Neural Approach to 626, p.625, 2009.

C. Robert, A. Statthopoulos, and M. G. Karlaftis, The Bayesian choice: a decision-theoretic motivation A multivariate state space approach for urban traffic 630 flow modeling and predicting Classification and Prediction of Road Traffic Using Application, Road Traffic Analysis and Prediction. IEEE Transactions on Inteliigent Transporation 627 Systems, pp.133-146, 1994.
DOI : 10.1007/978-1-4757-4314-2

R. Munoz, . J. Horowitz-]-g, M. L. Szekely, A. Rizzo, L. Thiagarajan et al., Mixture Kalman filter based highway congestion mode 634 and vehicle density estimator and its application Hierarchical clustering via joint between-within dis- 637 tances:extending ward's minimum variance method, Specific Fuzzy Clustering. IEEE Transactions on Fuzzy Systems Proceedings of the 2004 American 635 Control Conference S. Madden, and 640 H. Balakrishnan. VTrack: Accurate, Energy-Aware Traffic Delay Estimation Using Mo- 641 bile Phones 7th ACM Conference on Embedded Networked Sensor Systems (SenSys), pp.297-308, 2002.

C. D. Berkeley, S. Work, O. Blandin, B. Tossavainen, A. Piccoli et al., Real-time freeway traffic state estimation based on extended 644 kalman filter: a general approach A traffic model for velocity 646 data assimilation Urban traffic flow prediction using a fuzzy- 648 neural approach, Transportation Research Part C: Emerging Technologies, pp.141-167, 2002.