P. Meakin, Fractals, Scaling and Growth Far from Equilibrium, 1998.

J. Krim and G. Palasantzas, EXPERIMENTAL OBSERVATIONS OF SELF-AFFINE SCALING AND KINETIC ROUGHENING AT SUB-MICRON LENGTHSCALES, International Journal of Modern Physics B, vol.09, issue.06, pp.599-632, 1995.
DOI : 10.1142/S0217979295000239

J. A. Greenwood and J. B. Williamson, Contact of Nominally Flat Surfaces, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.295, issue.1442, pp.300-319, 1966.
DOI : 10.1098/rspa.1966.0242

F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, American Journal of Physics, vol.19, issue.7, 2001.
DOI : 10.1119/1.1933017

A. W. Bush, R. D. Gibson, and T. R. Thomas, The elastic contact of a rough surface, Wear, vol.35, issue.1, pp.87-111, 1975.
DOI : 10.1016/0043-1648(75)90145-3

S. Hyun, L. Pei, J. F. Molinari, and M. O. Robbins, Finite-element analysis of contact between elastic self-affine surfaces, Physical Review E, vol.70, issue.2, p.26117, 2004.
DOI : 10.1103/PhysRevE.70.026117

C. Campañá and M. H. Müser, Contact mechanics of real vs. randomly rough surfaces: A Green's function molecular dynamics study, Europhysics Letters (EPL), vol.77, issue.3, p.38005, 2007.
DOI : 10.1209/0295-5075/77/38005

C. Campañá, B. N. Persson, and M. H. Müser, Transverse and normal interfacial stiffness of solids with randomly rough surfaces, Journal of Physics: Condensed Matter, vol.23, issue.8, p.85001, 2011.
DOI : 10.1088/0953-8984/23/8/085001

A. Almqvist, C. Campañá, N. Prodanov, and B. N. Persson, Interfacial separation between elastic solids with randomly rough surfaces: Comparison between theory and numerical techniques, Journal of the Mechanics and Physics of Solids, vol.59, issue.11, pp.2355-2369, 2011.
DOI : 10.1016/j.jmps.2011.08.004

R. Pohrt and V. L. Popov, Normal Contact Stiffness of Elastic Solids with Fractal Rough Surfaces, Physical Review Letters, vol.108, issue.10, p.104301, 2012.
DOI : 10.1103/PhysRevLett.108.104301

C. Campañá, M. H. Müser, and M. O. Robbins, Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions, Journal of Physics: Condensed Matter, vol.20, issue.35, p.354013, 2008.
DOI : 10.1088/0953-8984/20/35/354013

L. Pei, S. Hyun, J. F. Molinari, and M. O. Robbins, Finite element modeling of elasto-plastic contact between rough surfaces, Journal of the Mechanics and Physics of Solids, vol.53, issue.11, pp.2385-2409, 2005.
DOI : 10.1016/j.jmps.2005.06.008

A. Fournier, D. Fussell, and L. Carpenter, Computer rendering of stochastic models, Communications of the ACM, vol.25, issue.6, pp.371-384, 1982.
DOI : 10.1145/358523.358553

V. A. Yastrebov, J. Durand, H. Proudhon, and G. Cailletaud, Rough surface contact analysis by means of the Finite Element Method and of a new reduced model, Comptes Rendus M??canique, vol.339, issue.7-8, pp.473-490, 2011.
DOI : 10.1016/j.crme.2011.05.006

URL : https://hal.archives-ouvertes.fr/hal-00624090

S. Hyun and M. O. Robbins, Elastic contact between rough surfaces: Effect of roughness at large and small wavelengths, Tribology International, vol.40, issue.10-12, pp.1413-1422, 2007.
DOI : 10.1016/j.triboint.2007.02.003

C. Putignano, L. Afferrante, G. Carbone, and G. Demelio, The influence of the statistical properties of self-affine surfaces in elastic contacts: A numerical investigation, Journal of the Mechanics and Physics of Solids, vol.60, issue.5, pp.973-982, 2012.
DOI : 10.1016/j.jmps.2012.01.006

K. L. Johnson, Contact mechanics, 1987.

J. A. Greenwood, A simplified elliptic model of rough surface contact, Wear, vol.261, issue.2, pp.191-200, 2006.
DOI : 10.1016/j.wear.2005.09.031

T. R. Thomas, Rough Surfaces, 1999.
DOI : 10.1142/p086

M. S. Longuet-higgins, Statistical Properties of an Isotropic Random Surface, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.250, issue.975, pp.157-174, 1957.
DOI : 10.1098/rsta.1957.0018

G. Carbone and F. Bottiglione, Asperity contact theories: Do they predict linearity between contact area and load?, Journal of the Mechanics and Physics of Solids, vol.56, issue.8, pp.2555-2572, 2008.
DOI : 10.1016/j.jmps.2008.03.011

M. Paggi and M. Ciavarella, The coefficient of proportionality ?? between real contact area and load, with new asperity models, Wear, vol.268, issue.7-8, pp.1020-1029, 2010.
DOI : 10.1016/j.wear.2009.12.038

B. N. Persson, Theory of rubber friction and contact mechanics, The Journal of Chemical Physics, vol.115, issue.8, pp.3840-3861, 2001.
DOI : 10.1063/1.1388626

B. N. Persson, Elastoplastic Contact between Randomly Rough Surfaces, Physical Review Letters, vol.87, issue.11, p.116101, 2001.
DOI : 10.1103/PhysRevLett.87.116101

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.3647-3679, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

Y. Z. Hu and K. Tonder, Simulation of 3-D random rough surface by 2-D digital filter and fourier analysis, International Journal of Machine Tools and Manufacture, vol.32, issue.1-2, pp.83-90, 1992.
DOI : 10.1016/0890-6955(92)90064-N

B. Luan and M. O. Robbins, The breakdown of continuum models for mechanical contacts, Nature, vol.269, issue.7044, pp.929-932, 2005.
DOI : 10.1016/S0927-796X(01)00039-0

H. M. Stanley and T. Kato, An FFT-Based Method for Rough Surface Contact, Journal of Tribology, vol.119, issue.3, pp.481-485, 1997.
DOI : 10.1115/1.2833523