
HAL Id: hal-00752825
https://minesparis-psl.hal.science/hal-00752825

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interprocedural Analyses of Fortran Programs
Béatrice Creusillet, François Irigoin

To cite this version:
Béatrice Creusillet, François Irigoin. Interprocedural Analyses of Fortran Programs. Parallel Com-
puting, 1997, Vol. 24 (No. 3-4), pp.629-648. �10.1016/S0167-8191(98)00028-3�. �hal-00752825�

https://minesparis-psl.hal.science/hal-00752825
https://hal.archives-ouvertes.fr


Interprocedural Analyses of Fortran Programs

B�eatrice Creusillet and Fran�cois Irigoin�

Centre de recherche en informatique� �Ecole des mines de Paris

��� rue Saint�Honor�e� ����� Fontainebleau cedex� France

Abstract

Interprocedural analyses 	IPA
 are becoming more and more common in com�

mercial compilers� But research on the analysis of Fortran programs is still go�

ing on� as a number of problems are not yet satisfactorily solved and others

are emerging with new language dialects� This paper presents a survey of the

main interprocedural analysis techniques� with an emphasis on the suitability

of the analysis framework for the characteristics of the original semantic prob�

lem� Our experience with the pips interprocedural compiler workbench is then

described� pips includes a make�like mechanism� PipsMake� which takes care of

the interleavings between top�down and bottom�up analyses and allows a quick

prototyping of new interprocedural analyses� Intensive summarization is used to

reduce storage requirements and achieve reasonable analysis times when deal�

ing with real�life applications� The speed�accuracy tradeos made for pips are

discussed in the light of other interprocedural tools�

Key words� Interprocedural analysis� parallelization� re�engineering� pips�

�E�mail� fcreusillet�irigoing�cri�ensmp�fr

�



Introduction

Real life applications are split into several procedures to factorize code as much as

possible and to improve readability� Traditional compilers only provide separate com�

pilation� and procedure boundaries prevent many analyses and optimizations� such as

constant propagation for instance� although they are of paramount importance in par�

allelizing compilers ���� ��� to achieve reasonable performances� They are also more

and more necessary for sequential machines� Interprocedural techniques have been

introduced to cope with this problem�

To our knowledge� the oldest article about interprocedural analyses was written

more than twenty years ago by Allen ���� Since then� research has focused on three

aspects of interprocedural techniques	 Frameworks 
how to perform these analyses��

semantic problems 
what information to propagate�� and the representation of problem

solutions� which is critical because the amount of gathered information is much larger

than with intraprocedural analyses�

Today� many commercial compilers include some interprocedural optimizations� In

����� the convex Application Compiler was the rst on the market ����� it includes

several complex analyses� such as interprocedural pointer tracking or array section anal�

ysis� The acknowledged origins for this compiler have to be found in several research

projects	 ptran ����� ParaScope ����� Parafrase�� ����� and pat ����� Other commer�

cial products� such as the product line developed by Applied Parallel Research� the xlf

compiler from ibm 
option �qipa�� or the sgi� foresys� kap� and vast compilers�

have since included various interprocedural analyses�

But most interprocedural techniques are still in the research domain� Several ad�

vanced analyses are too costly to be integrated in commercial products� Also� new lan�

guage dialects such as hpf are emerging� and with them� new interprocedural semantic

problems� Finally� as problems are being solved� new applications are considered�

�



This paper is organized as follows� In Section �� we survey the main approaches

proposed to solve problems due to procedure calls� We emphasize the relationship

between the interprocedural framework and the characteristics of the semantic problem�

This study is restricted to the analysis of Fortran�like programs� but we also cite papers

about other languages when the presented techniques can readily be applied� As an

example� we use in Section � the interprocedural framework of pips� the open compiler

workbench developed at �Ecole des mines de Paris� We rst explain how interprocedural

analyses are performed� and how they are supported by an interprocedural engine�

PipsMake� The main analyses used for program parallelization or re�engineering are

then described� as well as recent and planned developments� Finally� pips is evaluated

along with similar research tools�

� A Survey of Interprocedural Techniques

When dealing with a semantic problem whose solutions involve information from sev�

eral procedures� two decisions have to be made� The rst one is the choice of the

interprocedural technique	 Inlining or interprocedural analysis or a mix of them 
Sec�

tion ����� Secondly� an interprocedural framework must be chosen 
Section ����� de�

pending on some of the characteristics of the semantic problem 
Section �����

Many semantic problems benet from interprocedural techniques� The most im�

portant ones are described in Section ����

��� Inlining� Interprocedural Analysis� Or Cloning�

Since procedure boundaries are handled very conservatively by traditional compilers�

the rst and most intuitive approach to handle procedure calls is to expand them

inline� that is to replace each call by the corresponding code� in a recursive top�down

or bottom�up manner� The main advantage is that usual intraprocedural analyses

�



and transformations can be applied on the resulting code� hopefully with the same

precision� However� there are several drawbacks ���� ���	

�� Inlining is not always possible� due to array reshaping�� or recursive procedures

in languages other than fortran ���

�� The resulting code is usually much larger than the original�� If a procedure a

calls procedure b tab times� and procedure b calls procedure c tbc times� then c is

expanded tab � tbc� The growth of the code is thus potentially exponential� and

this increases the complexity of subsequent analyses�

�� Even when the resulting code is not overwhelmingly larger� the complexity of

subsequent analyses may grow dramatically because their complexity is higher

than O
n�� In an automatic parallelizer for instance� if a loop contains n� ref�

erences to array A� and a procedure which contains n� such references is called

within� then n� � n� additional dependence tests are necessary to analyze the

loop�

�� And nally� the translation mechanisms may reduce the e�ciency of subsequent

intraprocedural analyses� for example by generating nonlinear terms in array

subscript expressions �����

Partial inlining is more suitable to actually optimize programs� User�controlled inlining

is usually available in compilers� Another solution is to let the compiler automatically

inline some functions or some call sites� according to a heuristic� The most advanced

compilers seem to be the convex Application Compiler and the ibm xlf compiler�

However� the best heuristics are usually based on results from previous interprocedural

phases �����

�This occurs when an array is not similarly declared in the caller and the callee�
�Before any subsequent optimization such as dead code elimination�

�



A second approach�� is to compute summaries of the procedure behaviors� to trans�

late them as accurately as possible into the callers� or callees� name space depending

on the direction of the analysis� and to use the translated summaries as abstractions

of procedures� This method has the opposite advantages and consequences of inlining�

It does not have its complexity limitations� since no code is duplicated� and since sum�

maries are usually more compact than the code they abstract� Basically� if procedure

sizes are bounded� and if summaries have a constant or bounded size� interprocedural

analyses are linear versus the sizes of the programs� Moreover� there is no restriction

on the input code 
see Item � on Page ��� However� much precision may be lost� due

to 
�� summarization techniques� 
�� translation processes� and 
�� simplication of

the program structure representation�

Between these two approaches� a recent technique lessens the drawbacks of inter�

procedural analysis� but preserves a reasonable complexity� Selective cloning ���� ���

duplicates procedures on the basis of calling contexts� For example� a heuristic based

on integer variable values has proved useful in an automatic parallelizer� without in�

creasing the program size dramatically ����� However� even if this approach alleviates

some precision problems 
see Section ����� its decision heuristics are usually based on

another interprocedural information� and subsequent program analyses and transfor�

mations may require an interprocedural propagation of information�

It would seem obvious that the best solution certainly is a mix of these techniques�

In the convex Application Compiler� interprocedural analysis results are rst used

to decide to inline some functions� and then to duplicate some others� But whatever

solution is chosen� apart from an impractical systematic inlining� some interprocedural

analyses are necessary� The main existing techniques are surveyed in the next sections�

�This second approach is less widely spread at least in commercial compilers

�



��� Characteristics of Interprocedural Problems

Some interprocedural problems are intrinsically much more di�cult to solve than other

ones� For instance it is easier to precisely compute the set of variables that may be

modied by a procedure call� than the set of variables that are always modied ����

because in the last case the internal control �ow of the called procedures must be taken

into account�

Two main criteria have been proposed to classify interprocedural problems	 Flow

sensitivity and context sensitivity 
also called path speci�city� ��� ��� ����

An interprocedural problem is said to be �ow sensitive if it cannot be solved pre�

cisely without considering the internal control �ows of procedures� The above men�

tioned may be modi�ed problem is �ow insensitive� while the must be modi�ed problem

is �ow sensitive� For example� in the procedure bar in Figure �� j and k both belong

to the may be modi�ed variable set because there exists at least one instruction which

modies them� But only j belongs to the must be modi�ed set because k is modied

only along one control �ow path 
the true test branch� and not along the other one


the false test branch��

procedure bar�i�j�k�

if �i�le��� then

j��

k�	

else

j�


endif

end

Figure �	 Flow sensitivity

X = 5

call FOO(X)

X = 7

call FOO(X)

FOO

.

.

.

Figure �	 Unrealizable paths

�



Interprocedural context sensitive 
or path speci�c� analyses are analyses whose re�

sults depend on the execution path taken to reach a point in the program� Suppose we

want to compute the value of x after each call to foo in the example of Figure �� Let

us assume that foo increments its parameter� A context insensitive algorithm does not

distinguish the two paths E�R and E��R� through foo� and considers that the value of x

before the calls is either � or � because of arcs E and E�� and therefore that it is either

� or � after each call� In fact� this algorithm takes into account two unrealizable paths	

One from the rst call to the return node for the second call 
E�R��� and another one

from the second call to the return node for the rst call 
E��R�� However there are only

two possible paths� namely E�R and E��R��

Of course� these two criteria must be taken into account when chosing or imple�

menting an interprocedural analysis framework�

��� Interprocedural Analysis Frameworks

Many interprocedural analysis frameworks have been dened 
some examples can be

found in ���� ��� ��� ����� They di�er in several ways	 The degree of summarization

and the accuracy of the translation across procedure calls are two important issues�

and directly depend on the specic semantic problem and the representation of its

solutions� But the representation of the program structure on which the information is

conveyed and the ability to perform or not �ow sensitive or context sensitive analyses

are also of importance� These last two problems are related ���� ���� as shown in this

section�

Interprocedural analyses can be performed on the program call graph� where nodes

represent individual procedures� and edges represent call sites�� Each edge is labeled

with the actual parameters associated to the corresponding call site�

�Mathematically� this is a multigraph� since two nodes can be connected by several edges�

�



Call graphs can be constructed very e�ciently ���� ���� and can provide su�cient

information for many program optimizations� including parallelization� However� they

do not allow �ow sensitive interprocedural analyses� because they do not take into

account the intraprocedural control �ow of individual procedures�

To perform �ow sensitive analyses� such as array region analyses�� interprocedural

representations of the program must therefore provide information about the internal

control �ow of procedures� as well as the external control �ow� The most precise ap�

proach is to take into account the whole internal control �ow graph of every procedure�

However� resulting data �ow analyses may be as complex as on a fully inlined program�

To reduce this complexity� one solution is to use a less precise abstraction of the

program structure� in order to reduce its size� This can be done either at the inter�

procedural level� or even at the intraprocedural level� In this last case� the size of

the representation of each procedure is reduced� Several sparse interprocedural repre�

sentations have been designed for particular classes of problems� such as the program

summary graph ����� the system dependence graph ���� ���� � � � Intraprocedural sparse

representations include the ssa form ��� ��� ��� and the sparse data �ow evaluation

graph ����� The uni�ed interprocedural graph ���� provides a demand�driven unied

representation which combines the advantages of the sparse representations without

restricting the scope of the possible analyses� The rationale of these approaches is to

avoid computing irrelevant intermediate results� while still performing a global analysis�

Reducing the cost of interprocedural data �ow analyses can also be achieved by

demand�driven techniques� such as those presented in ���� and ����� Incremental anal�

ysis ���� ��� ��� addresses the problem of avoiding unnecessary recomputations of data

�ow solutions in case of local program changes� but it requires an initial exhaustive

solution� Another solution to reduce the cost of interprocedural analyses is to perform

�Array region analyses collect information about the way array elements are used and de�ned by

the program�

�



them in parallel ���� ����

When the representation of the program interprocedural control �ow is approxi�

mative� and when the problem is context sensitive� the ability to avoid taking into

account unrealizable paths ���� ��� is an issue� Several solutions have been proposed

for this problem� the most common approach being to tag solutions with path history

or path specic information ���� ��� ���� However� this may result in an exponential

growth of the number of solutions at each node� and thus in overwhelming execution

times and memory requirements� Selective cloning ���� ��� also appears as a partial

solution� since it reduces the number of unrealizable paths taken into account� From

our experience with the pips parallelizer� combining results from several analyses can

also lessen the problem� This is the case with preconditions and transformers in pips


see Section ����� They correctly handle the case of Figure � although neither analysis

is context sensitive�

Many other problems may also be addressed by interprocedural tools� but are not

developed here	 Recursivity� formal procedures�� or unavailable source code for called

procedures�

��� Some Usual Interprocedural Problems

For the last two decades� the interprocedural analysis of scientic programs has been

chie�y driven by research on automatic parallelization� parallelizing large loops con�

taining procedure calls being of the utmost importance to achieve good performances�

At rst� the main purpose was therefore to analyze interprocedural dependences�

And alias analysis ���� ��� ��� ��� as well as summary data �ow information or inter�

procedural side�e	ects 
sdfi� ���� on scalar variables were among the main analyses� To

enhance the results of these analyses� and to enable other useful code transformations

�Recursivity and formal procedures are not often used in scienti�c programs�

�



such as partial redundancy elimination ����� many other interprocedural scalar analyses

have also been introduced� They range from constant propagation ���� ��� ��� ��� ���� to

subexpression availability and variable values ����� ranges ����� or preconditions ���� ���

propagation� To handle arrays more accurately than sdfi� �ow insensitive array region

analysis was introduced by Triolet ����� followed by many others ���� �� ��� ����

Today� many commercial products include some interprocedural �ow insensitive

analyses� as complex as array region analyses� or pointer tracking in the most ad�

vanced tools such as the convex Application Compiler� But research prototypes are

still ahead� in particular for symbolic analyses ���� ��� and �ow sensitive array region

analyses ���� ��� ��� ��� which are mainly used for array privatization in parallelizing

tools� Also� the compilation of fortran dialects such as hpf raises new interproce�

dural problems ��� ��� ���

��� Conclusion

A wide variety of interprocedural frameworks exists� They are more or less adapted to

a specic interprocedural problem� The choice mainly depends on the characteristics

of the problem� such as �ow sensitivity or context sensitivity� but also on the desired

complexity�precision ratio� given that the quality of the underlying intraprocedural

analysis sets an upper bound on the precision of the interprocedural analysis�

Many �ow sensitive analyses are still too complex for commercial products� which

only implement �ow�insensitive interprocedural analyses� But as good experimental

results are published ���� ���� and as the power and the memory sizes of computers

increase� such analyses will undoubtedly appear in commercial tools� Not long ago�

even �ow insensitive array region analyses were considered too time and space con�

suming� They are now implemented in all leading research parallelizer projects� and

can be found in some commercial compilers �����

��



� An Example� The PIPS Compiler Workbench

It is more and more widely acknowledged that not only program optimizations for

parallel and sequential target machines� but also program maintenance and reverse�

engineering benet from interprocedural techniques� To experiment various applica�

tions without having to build a new tool each time� a common infrastructure is neces�

sary� pips is such a source�to�source fortran open compiler workbench� The project

began in ����� with the generation of code for parallel vector computers with shared

memory� Its infrastructure has since proven good enough not to require any major

change� Today� its main use is code generation for distributed memory machines� An�

other current research track is the restructuring and reverse�engineering of production

codes�

In this section� we focus on pips interprocedural characteristics� In Sections ���

and ���� we describe its interprocedural infrastructure� We then present in Section ���

the main interprocedural analyses available in pips� A fourth section deals with the

recent and planned developments� Finally� the fth section is devoted to an informal

comparison with similar interprocedural tools�

��� PIPS Interprocedural Framework

pips uses an implicit call graph� It allows �ow and context sensitive analyses� since

the program representation contains the individual control �ow graphs of all the pro�

cedures� Summarization is used to keep a linear complexity for all interprocedural

analyses when the program size increases� This is achieved by eliminating control in�

formation� and by avoiding list data structures whose size could increase with the pro�

cedure height in the call graph� Translation across procedure boundaries is performed

at each call site using the correspondences between formal and actual parameters� and

��



between common declarations��

For downward analyses 
see Figure ��� the callers are analyzed rst� the information

at each call site is propagated to the called subroutine to form a summary� when there

are several call sites for a single procedure� the summaries corresponding to the call

sites are merged� after being translated into the callee�s name space� to form a unique

summary� This summary is then used to perform the intraprocedural analysis of the

called procedure�

For upward analyses 
see Figure ��� the leaves of the call tree are analyzed rst�

The procedure summaries are then used at each call site� after the translation process�

during the intraprocedural analysis of the callers�

PROC1 PROC2

PROC3

merge

call PROC3call PROC3

call PROC3

translation

translation

translation

summary

Figure �	 Downward propagation

PROC1 PROC2

PROC3

call PROC3call PROC3

call PROC3

translation

translation

translation

summary

Figure �	 Upward propagation

�When the translation is not possible �because the variable is declared in a SAVE statement� or

because it belongs to a COMMON not declared in the caller	 a unique global identi�er is used�

��



��� PIPS Interprocedural Engine

With pips infrastructure� the programmer does not have to worry about the orches�

tration of various interdependent analyses 
or phases�� about the call graph traversal

order� and about the availability of other analysis results 
or resources�� A make�like

mechanism� called PipsMake� automatically determines the order in which the di�er�

ent phases must be scheduled for the di�erent procedures to have the resources ready

when needed initially or after some minor changes of sources���� or analysis options�

The ordering is automatically deduced from a specication le� written by the phase

designers� using a call�by�need interpretation� For instance� the following production

rule for array regions	

regions � MODULE�regions

� PROGRAM�entities

� MODULE�transformers

� MODULE�preconditions

� CALLEES�summaryregions

species that the production of the resource regions for the current subroutine 
ormod�

ule� is performed by the function regions� and that it requires the program symbol

table 
entities�� several other pieces of information about the current module 
trans�

formers and preconditions�� and the summary regions of all the callees� This rule

therefore describes a backward propagation� Similarly� a forward analysis would be

described by a production rule depending on information from the callers�

The programmer of the new phase must solely provide the function regions which

performs the intraprocedural propagation of the resource and translates the summary

regions of the callees into the current module name space� PipsMake automatically

calls the function regions after having computed the other necessary resources� or after

having checked that they are available and up�to�date�

��



This allows a quick prototyping of both forward and backward analyses on the pro�

gram call graph� provided that the program is non�recursive� In addition� the simplicity

of the scheme from the designer point of view promotes reuse of analysis results� An�

other advantage of this architecture is that it is demand�driven at the procedure level	

Resources are computed or re�computed only once and only when requested by other

analyses or transformations� This simple scheme based on summaries provides the �ex�

ibility and speed necessary for interactivity when dealing with source changes and new

option selections because each intraprocedural analysis is performed fast enough� A

lower level of granularity for incremental recompilation would not improve the response

time in a useful way�

��� PIPS Interprocedural Analyses

Since interprocedurality was at the origin of the pips project� all its analyses are in�

terprocedural but the dependence analysis�� This section provides a description of

the analyses that have proven to be useful for program transformations such as the

parallelization of fortran codes or the understanding of program behavior� which is

a crucial issue for the maintenance of application codes� E�ects� transformers� precon�

ditions and array region analyses are described below� No alias analysis is performed�

because the fortran �� standard forbids interprocedural aliasing of modied variables


see ���� paragraph ����������

Memory E�ects

This abstraction describes the memory operations performed by statements or proce�

dures� An e	ect on a memory reference is a read or write e�ect� pips also provides

information about the likeliness of the reference	 must e�ects are always performed by

�
pips can automatically parallelize loop nests with procedure calls� but the interprocedural part is

carried out by e
ect or region analysis�

��



all executions� while may e�ects may be performed by some execution� or even never�

Procedure summaries are obtained by eliminating e�ects on local variables� These

summaries are then translated in the caller�s name space for each call site� describing

the e�ects of each call statement�

This information can be used to parallelize loops containing procedure calls thanks

to the translation process� E�ects are also used to support other analyses� such as

preconditions� to avoid propagating information about a variable if it is neither used

nor modied in a subroutine and its descendents�

Transformers

Summary e�ects are the sets of variables read or written by procedures� But they do

not describe how these variables are modied� In pips� this is the role of transformers�

Transformers abstract the e�ects of instructions and procedure calls upon the values

of integer scalar variables by a�ne approximations of the relations that exist between

their values before and after any execution of a statement or procedure call� For

example� the dummy procedure foo	

subroutine foo�i�j�

if �i�le���� then

i � ��

else

i � i��

endif

j � j��

end

is abstracted by the transformer T�i�j� f��	
i� i�init	
i� j

j�init��g� It

means that the value of i after any call to foo is greater than �� and greater than its

value before any call� and that the value of j is incremented by ��

��



Real� logical and string variables are not taken into account because the control

�ow at the loop level is mainly derived from integer values� Moreover� dusty decks and

validation programs provided by users do not often use logical and character strings�

and deriving information about �oating point values is very di�cult�

Transformer analysis is a backward analysis� and its results are mainly used by two

other types of analyses	 preconditions and array region analyses� Transformers are

called return functions in �����

Preconditions

Many program analyses and transformations can be improved when the relations be�

tween variable values are known� This is the case for loop parallelization which benets

from the knowledge of loop bound values� as well as array subscript symbolic constants�

Dead code elimination and code specialization are also greatly enhanced by this type

of information�

In pips precondition analysis labels each statement with a condition on the vari�

able current values holding true before any of its executions� This condition involves

equality constraints as well as inequalities� Therefore� values of symbolic constants and

inequalities from test conditions are both preserved� This type of analysis greatly ben�

ets from interprocedural techniques� In many programs� many variables used either

in loop bounds� in tests conditions or in array subscripts� are initialized in a separate

procedure� Tests also often restrict the conditions under which procedures may be

called�

Precondition analysis is a forward analysis� and relies on transformers to derive

post�conditions for statement or procedure calls from their preconditions� The infor�

mation available in initialization routines is moved upwards to the main procedure

using transformers� and propagated downwards towards the leaf procedures by pre�

conditions� The whole analysis is thus completed in two traversals of the call graph�

��



Summary preconditions are similar to jump functions �����

Array Region Analyses

E	ects often fail to give precise information about the way array element sets are

used and dened by procedures� And this lack of accuracy often prevents subsequent

program transformations such as loop parallelization�

To obtain better accuracy� and to enable advanced program transformations such as

array privatization� several �ow sensitive array region analyses have been implemented

in pips ���� ���� read and write regions represent the e�ects of statements and

procedures on array elements as sets� They are mainly used by the dependence analysis

phase� but also by hpfc� the pips hpf compiler ����� In addition� two other types of

regions have recently been introduced	 in regions contain the array elements imported

by the current statement	� while out regions contain the elements exported towards

the program continuation�
�

in and out array regions ease the program comprehension by hiding internal details

of procedures and composite statements 
such as loops or tests�� and by providing more

relevant information to the user than read and write regions� They are also used

to privatize array regions in loops ����� New types of program transformations based

on in and out regions are currently being implemented� such as the re�engineering

of procedure declarations� This transformation spots global arrays used as temporary

variables in procedures and reallocates them as stack�allocated local variables� It is

useful for the maintenance and parallelization of dusty deck programs�

	
in regions are similar to upward exposed read regions computed by others ��� �� ��� ����

�

out regions are di
erent from downward exposed regions� because they also depend on the future

of the computation�

��



��� Recent and Planned Developments

We have only described some of the many analyses available in pips� Other analyses

include interprocedural symbolic complexity and reduction detection� or intraprocedu�

ral dependence and array data �ow analyses ����� pips also includes an impressive set

of intraprocedural program transformations� including source code generation� which

heavily rely on the previously described interprocedural analyses�

The latest developments essentially focus on these program transformations	 Array

privatization for loops and procedures 
see Section ����� or partial evaluation� dead

code elimination ��� and code restructuring based on preconditions or use�def chains�

for example� The recursive application of transformations and their interaction with

the analyses on which they rely� creates a new problem in an interprocedural setup�

For example� restructuring a monoprocedural programA using its preconditions can

result in more accurate preconditions� which can themselves be used to restructure A�

and so on� This is one of the simplest schemes� Suppose now that A is called by B�

Restructuring A modies its code� and thus invalidates its transformers� as well as the

transformers of B� since transformer analysis is a backward analysis� This may result

in more precise preconditions in B� and therefore in more precise preconditions in A�

which can be now be used to restructure A� and so on�

Handling such problems involves an extension of PipsMake to deal with the x

points of analysis and transformation phases�

Also� recent developments in the array region area have shown that representation

independence could be improved ����� For instance� di�erent array region represen�

tations such as intervals� convex polyhedra� list of convex polyhedra or Presburger

formulae� have been made usable by a generic interprocedural array region engine� Al�

though the saving expressed in lines of code is limited because the programming e�ort

is more at the operator level than at the engine level� and because operators obviously

��



depend on the representation� this is very useful for experiments� This �exibility could

be used in commercial products to let the user make speed�accuracy tradeo�s� How�

ever� the dependence between di�erent kinds of analyses makes such clear interface

non trivial� For instance� region analysis uses precondition analysis� The combination

of a polyhedral representation for regions and of a Presburger�based representation for

preconditions� as well as all three other di�erent possible combinations are not obvious

and would require additional conversion operators�

Representation independence could be used to move pips away from its original lin�

ear algebra framework and into polynomial representations as in Parafrase�� 
see next

section� or into Presburger�based representations� Such a move has been shown nec�

essary in ����� but we feel that linear algebra and polyhedra are an interesting tradeo�

in the accuracy�speed space and that their potential has not yet been measured�

��� PIPS and Other Research Tools

Many research Fortran optimizing tools include some kind of interprocedural analyses�

but the closest ones to pips certainly are fiat�suif ���� ���� ParaScope ���� and the

D system ����� Polaris ����� Parafrase�� ����� and Panorama ���� ��� ����

FIAT�SUIF

suif is an intraprocedural compiler for parallel machines developed at Stanford� To

enable the parallelization of loops containing procedure calls� fiat ����� an interproce�

dural engine� has been added on top of it� fiat is a framework which allows prototyping

of �ow insensitive and �ow sensitive interprocedural data �ow analyses� The program�

mer has only to provide the initialization functions� the meet operator� the transfer

function� and the direction of the analysis� Much like PipsMake� fiat is demand�

driven	 The programmer does not have to worry about the ordering of interprocedural

��



analyses�

Several interprocedural analyses are available in fiat�suif� The rst backward

analysis computes a transfer function which bears some resemblance with pips trans�

formers� but in its handling of test conditions� Then some kind of preconditions are

computed� which give each variable value in terms of loop invariants and indices of

enclosing loops� An additional phase propagates inequality constraints from test con�

ditions� Several backward interprocedural array regions analyses are nally performed�

The support of automatic selective procedure cloning and� hence� of some context

sensitivity is a distinctive advantage of this framework� Unfortunately� fiat�suif had

not yet been released in the public domain for trial when we wrote this paper�

Parascope and the D System

Parascope and the D system are being both developed at Rice University� They use

fiat as an interprocedural engine� like fiat�suif�

Parascope provides several interprocedural analyses	 mod�ref analysis 
i�e� ef�

fects�� array region analyses based on regular section descriptors 
RSD� ����� alias

analysis� constant propagation and symbolic value analysis�

The D system is built in the context of Parascope� and aims at compiling Fortran D

programs� Fortran D is an hpf�like dialect� and requires specic interprocedural anal�

yses� such as reaching decomposition or overlap analyses�

Parafrase��

Parafrase�� is an optimizing and parallelizing source�to�source compiler developed at

the University of Illinois at Urbana�Champaign� It includes many phases� some of

which are interprocedural� especially a powerful symbolic analysis based on polynomi�

als �����

��



Polaris

Polaris too is being developed at the University of Illinois� Most Polaris phases are

intraprocedural and require inline expansion to parallelize loops e�ciently� However�

automatic inlining is provided� and some interprocedural phases� such as constant prop�

agation� have been implemented lately or are planned� such as array region analyses

based on lists of regular section descriptors 
RSDs��

Panorama

The Panorama parallelizing compiler has been initiated at the University of Minnesota�

to support systems with memory hierarchies� It performs several interprocedural anal�

yses� such as use�def chains ���� and �ow�sensitive array region analysis based on lists of

guarded regular section descriptors 
gRSDs�� Interprocedural analyses are performed

on the program hierarchical supergraph� which is an extension of Myers� supergraph�

As such� it provides the necessary framework to perform �ow and context sensitive

analyses� But no interprocedural engine such as fiat or PipsMake is used� and each

analysis must redene its own traversal of the hierarchical supergraph�

Relationships with PIPS

It is impossible to compare di�erent interprocedural tools in a scientic way� They

do not provide exactly the same sets of analyses� And when two tools support the

same interprocedural analysis� its precision depends on several factors� such as the

quality of preliminary analyses� the quality of the intraprocedural propagation� the

characteristics of the chosen representation 
whether it can include symbolic context

information or not� for example�� and the precision of the translations across procedure

boundaries�

In this context� pips interprocedural framework is unique compared to the other

��



approaches� Firstly� it provides an interprocedural demand�driven engine which also

ensures the consistency of the database for a given option selection and source editing�

This feature is unique among interprocedural tools because pips was designed primarily

to study interprocedural issues� Along with the program representation as a call graph�

this engine allows �ow sensitive analyses� Secondly� pips o�ers a comprehensive set

of interrelated interprocedural analyses 
e	ects� transformers� preconditions and array

regions� and of transformations exploiting the symbolic information gathered� e�g�

partial evaluation�

These features do not come at the expense of execution time and pips can be

used interactively as well as in batch mode� As long as no code transformation is

applied� each analysis is applied only once on each module� At a given average module

size� summarization results in a linear complexity against the program size for all

interprocedural analyses�

Apart from its interprocedural features� pips o�ers a number of advantages� It was

designed as an open workbench to support student contributions and distributed devel�

opment� Extensions can be developed without linking with pips source because every

useful data structure can be stored on disk and retrieved by another program� And

pips is a source�to�source tool and great care was taken to produce user�recognizable

source code� The control structure of the code and comments are preserved as long as

possible�

However� the use of summarization� to keep summaries small� combined with a pure

interprocedural framework without cloning often prevents interprocedural path di�er�

entiation� whereas other parallelizers ���� ��� partially achieve this goal through auto�

matic selective procedure cloning� Since pips is an interactive tool� manual cloning was

tried and more accurate results were obtained� especially for forward interprocedural

analyses� such as preconditions and out regions� and for intraprocedural transforma�

tions� Since pips does not use an explicit interprocedural control �ow graph� cloning

��



Features FIAT Parascope Parafrase� Panorama PIPS Polaris

SUIF D�System hpfc

Cloning X X

Inlining X X

Alias Analysis X X X

Constants X X X X X

Inequalities X X X

Polynomials X X

E
ects �SDFI	 X X

RSD X

RSDs X X

gRSDs X

Polyhedral X

Use�Def Chains X X

Reaching Decomp� X X

Overlap X

IO�s X X

Engine FIAT FIAT PipsMake

Figure �	 Features of some academic projects

and selective cloning would be easy to implement�

Features described in references and WEB pages about the projects presented above

are shown in Figure ���� They are informally grouped into categories� some related to

the environment� the store and the command domains of denotational semantics� This

summary is not provided as a denite comparison between di�erent academic projects

which are still evolving� but as a set of pointers for readers interested in a given feature�

Obviously we take responsibility for any mistake or missing information�

��



� Conclusion

Interprocedural analyses have come of age� Thanks to cpu and memory technology

improvements� futuristic approaches of the eighties are now implemented in commercial

compilers� Time and space complexities of such analyses are still issues� but they are

not perceived any longer as impossible to tackle�

Most research compiler prototypes take interprocedural issues into account and

some classication e�ort has now been undertaken to better understand the relation�

ship between the many interprocedural analyses published since ���� ����� But this

e�ort must be pursued� in particular for interdependent analyses which may override

the existing classication�

The current interprocedural frameworks for scientic programming in Fortran are

surveyed in this paper� Few experimental results about e�ectiveness ���� ��� ��� have

been published and additional research in the interprocedural analysis area is necessary

before a really formal comparison can be made� In particular� the speed�accuracy ratio

is still an issue� but has not yet been extensively studied ����� For that purpose� more

generic tools for the experimentation of interprocedural analyses� such as fiat �����

pag ���� or pips� should be made available�

Many issues linked to interprocedural analyses have been dealt with by pips� the in�

terprocedural Fortran �� source�to�source parallelizer developed at �Ecole des mines� It

supports a comprehensive set of interprocedural analyses� each with a large number of

accuracy options� Its interprocedural engine� PipsMake� is a unique feature among the

other interprocedural tools brie�y surveyed in this paper	 fiat�suif� Parascope and

the D System� Parafrase��� Polaris and Panorama� pips is a public�domain tool avail�

able for SunOS� Solaris� AIX� LINUX and OSF�� at URL http��www�cri�ensmp�fr�pips

designed to explore interprocedural techniques for Fortran programs� Future develop�

ments include array privatization at the procedure level� extension of PipsMake to deal

��



e�ciently with xpoints of analysis and transformation phases� and speed�accuracy

comparison of various array region analyses based on di�erent representations�

References

��� G� Agrawal and J� Saltz� Interprocedural partial redundancy elimination and its appli�

cation to distributed memory compilation� In International Conference on Programming

Language Design and Implementation� pages �������� June �����

��� F� E� Allen� Interprocedural data �ow analysis� In Proceedings of the IFIP Congress�

pages �������� �����

��� B� Alpern� M�N� Wegman� and F�K� Zadeck� Detecting equality of variables in programs�

In Symposium on Principles of Programming Languages� pages ����� January �����

��� M� Alt and F� Martin� Generation of e�cient interprocedural analyzers with PAG� In

Static Analysis Symposium� Lecture Notes in Computer Science� pages ������ Springer�

Verlag� �����

��� American National Standard Institute� Programming Language FORTRAN� ANSI X����

���	� ISO �
�����	�� �����

��� C� Ancourt� F� Coelho� B� Creusillet� and R� Keryell� How to add a new phase in PIPS�

The case of dead code elimination� In Sixth International Workshop on Compilers for

Parallel Computers� pages ������ December �����

��� V� Balasundaram and K� Kennedy� A technique for summarizing data access and its use

in parallelism enhancing transformations� In International Conference on Programming

Language Design and Implementation� pages ������ June �����

��� J� Banning� An e�cient way to �nd the side eects of procedure calls and the aliases of

variables� In Symposium on Principles of Programming Languages� January �����

��



��� S� Benkner and H�P� Brezany� P�and Zima� Processing array statements and procedure

interfaces in the PREPARE High Performance Fortran compiler� In International Con�

ference on Compiler Construction� Lecture Notes in Computer Science� pages ��������

April �����

���� D� Binkley� Interprocedural constant propagation using dependence graphs and a data�

�ow model� In International Conference on Compiler Construction� pages ��������

April �����

���� W� Blume� R� Doallo� R� Eigenmann� J� Grout� J� Hoe�inger� T� Lawrence� J� Lee�

D� Padua� Y� Paek� B� Pottenger� L� Rauchwerger� and P� Tu� Parallel programming

with Polaris� Computer� ��	��
������� December �����

���� W� Blume and R� Eigenmann� Performance analysis of parallelizing compilers on the

Perfect Benchmarks programs� IEEE Transactions on Parallel and Distributed Systems�

�	�
��������� November �����

���� W� Blume and R� Eigenmann� The range test� A dependence test for symbolic� non�

linear expressions� In International Conference on Supercomputing� pages ��������

November �����

���� W� Blume and R� Eigenmann� Symbolic analysis techniques needed for the eective

parallelization of the Perfect Benchmarks� In International Conference on Parallel Pro�

cessing� �����

���� M� Burke� An interval�based approach to exhaustive and incremental interprocedu�

ral data��ow analysis� ACM Transactions on Programming Languages and Systems�

��	�
��������� July �����

���� M� Burke and R� Cytron� Interprocedural dependence analysis and parallelization� In

ACM SIGPLAN Symposium on Compiler Construction� pages �������� July �����

��



���� Michael Burke and Linda Torczon� Interprocedural optimization� Eliminating unnec�

essary recompilation� ACM Transactions on Programming Languages and Systems�

��	�
��������� July �����

���� C� Callahan� K� Cooper� K� Kennedy� and L� Torczon� Interprocedural constant prop�

agation� In ACM SIGPLAN Symposium on Compiler Construction� pages ��������

�����

���� D� Callahan� The program summary graph and �ow�sensitive interprocedural data��ow

analysis� International Conference on Programming Language Design and Implementa�

tion� ACM SIGPLAN Notices� ��	�
������� July �����

���� D� Callahan� K� Cooper� R� Hood� K� Kennedy� and L� Torczon� ParaScope� A parallel

programming environment� The International Journal of Supercomputer Applications�

�	�
� Winter �����

���� D� Callahan and K� Kennedy� Analysis of interprocedural side eects in a parallel

programming environment� Journal of Parallel and Distributed Computing� �	��
�����

���� �����

���� P� Carini� Automatic inlining� Research Report RC ������ IBM� November �����

���� P� Carini� Flow�sensitive interprocedural constant propagation� Research report RC

������ IBM� November �����

���� J� Choi� R� Cytron� and J Ferrante� Automatic construction of sparse data �ow eval�

uation graphs� In Symposium on Principles of Programming Languages� pages ������

January �����

���� F� Coelho� Compilation of I�O communications for HPF� In Frontiers��
� pages ��������

February ����� Available via http���www�cri�ensmp�fr��coelho�

��



���� K� Cooper� M� Hall� R� Hood� K� Kennedy� K� McKinley� J� Mellor�Crummey� L� Torc�

zon� and S� Waren� The Parascope parallel programming environment� Proceedings of

the IEEE� ��	�
� February �����

���� K� Cooper� M� W� Hall� and K� Kennedy� Procedure cloning� In IEEE International

Conference on Computer Language� April �����

���� K� D� Cooper and K� Kennedy� E�cient computation of �ow insensitive interprocedural

summary information� In ACM SIGPLAN Symposium on Compiler Construction� pages

�������� June �����

���� K� D� Cooper and K� Kennedy� Fast interprocedural alias analysis� In Symposium on

Principles of Programming Languages� pages ������ February �����

���� B� Creusillet� Array Region Analyses and Applications� PhD thesis� �Ecole des mines de

Paris� December ����� Available at http���www�cri�ensmp�fr�doc�A�����ps�gz�

���� B� Creusillet and F� Irigoin� Interprocedural array region analyses� International Journal

of Parallel Programming special issue on LCPC�� ��	�
��������� �����

���� R� Cytron� J� Ferrante� B� Rosen� M� Wegman� and K� Zadeck� E�ciently computing

static single assignement form and the control dependence graph� In Symposium on

Principles of Programming Languages� pages ������ January �����

���� E� Duesterwald� R� Gupta� and M� L� Soa� Demand�driven computation of interproce�

dural data��ow� In Symposium on Principles of Programming Languages� pages ������

January �����

���� J� Ferrante� K� Ottenstein� and J� Warren� The program dependence graph and its use

in optimization� ACM Transactions on Programming Languages and Systems� �	�
�����

���� �����

��



���� S� Graham� S� Lucco� and O� Sharp� Orchestrating interactions among parallel compu�

tations� In International Conference on Programming Language Design and Implemen�

tation� pages �������� June ����� ACM SIGPLAN Notices�

���� D� Grove and L� Torczon� Interprocedural constant propagation� A study of jump func�

tions implementations� In International Conference on Programming Language Design

and Implementation� pages ������ June ����� ACM SIGPLAN Notices�

���� J� Gu� Z� Li� and G� Lee� Symbolic array data�ow analysis for array privatization and

program parallelization� In Supercomputing� December �����

���� J� Gu� Z� Li� and G� Lee� Experience with e�cient data �ow analysis for array privatiza�

tion� In Symposium on Principles and Practice of Parallel Programming� pages ��������

June �����

���� R� Gupta� L� Pollock� and M� L� Soa� Parallelizing data �ow analysis� In Workshop on

Parallel Compilation� May �����

���� M� Haghighat� Symbolic Analysis for Parallelizing Compilers� Kluwer Academic Pub�

lishers� �����

���� M� Hall� Managing Interprocedural Optimization� PhD thesis� Rice University� Houston�

Texas� April �����

���� M� Hall� S� Amarasinghe� B� Murphy� S��W� Liao� and M� Lam� Detecting coarse�

grain parallelism using an interprocedural parallelizing compiler� In Supercomputing�

December �����

���� M� Hall� J� Anderson� S� Amarasinghe� B� Murphy� S��W� Liao� E� Bugnion� and M� Lam�

Maximizing multiprocessor performance with the SUIF compiler� Computer� ��	��
����

��� December �����

��



���� M� Hall� S� Hiranandani� K� Kennedy� and C��W� Tseng� Interprocedural compilation

of Fortran D� Journal of Parallel and Distributed Computing� ��	�
��������� November

�����

���� M� Hall and K� Kennedy� E�cient call graph analysis� Letters on Programming Lan�

guages and Systems� �	�
��������� September �����

���� M� Hall� J� Mellor�Crummey� A� Carle� and R� Rodr��guez� FIAT� A framework for inter�

procedural analysis and transformation� In Sixth International Workshop on Languages

and Compilers for Parallel Computing� August �����

���� M� Hall� B� Murphy� S� Amarasinghe� S��W� Liao� and M� Lam� Interprocedural analysis

for parallelization� In Languages and Compilers for Parallel Computing� Lecture Notes

in Computer Science� pages ������ Springer�Verlag� August �����

���� M� J� Harrold and B� Malloy� A uni�ed interprocedural program representation for a

maintenance environment� IEEE Transactions on Software Engineering� ��	�
���������

June �����

���� M� J� Harrold and M� L� Soa� E�cient computation of interprocedural de�nition�use

chains� ACM Transactions on Programming Languages and Systems� ��	�
���������

March �����

���� P� Havlak and K� Kennedy� An implementation of interprocedural bounded regular

section analysis� IEEE Transactions on Parallel and Distributed Systems� �	�
���������

July �����

���� M� Hind� M� Burke� P� Carini� and S� Midki� Interprocedural array analysis � How

much precision do we need � In Third Workshop on Compilers for Parallel Computers�

pages ������ July �����

���� F� Irigoin� Interprocedural analyses for programming environments� InWorkshop on En�

vironments and Tools for Parallel Scienti�c Computing� pages �������� North�Holland�

September �����

��



���� F� Irigoin� P� Jouvelot� and R� Triolet� Semantical interprocedural parallelization� An

overview of the PIPS project� In International Conference on Supercomputing� pages

�������� June �����

���� S� Johnson� M� Cross� and M� Everett� Exploitation of symbolic information in inter�

procedural dependence analysis� Parallel Computing� ����������� �����

���� W� Landi and B� Ryder� A safe approximation algorithm for interprocedural pointer

aliasing� In International Conference on Programming Language Design and Implemen�

tation� pages �������� �����

���� Y��F� Lee� B� Ryder� and M� Fiuczynski� Region analysis� a parallel elimination method

for data �ow analysis� IEEE Transactions on Software Engineering� ��	��
���������

November �����

���� Z� Li and P��C� Yew� E�cient interprocedural analysis and program parallelization

and restructuring� In Symposium on Parallel Processing� Experience with Applications�

Languages and Systems� pages ������ �����

���� J� Loeliger and R� Metzger� Developing an interprocedural optimizing compiler� ACM

SIGPLAN Notices� ��	�
������� April �����

���� T� Marlowe and B� Ryder� An e�cient hybrid algorithm for incremental data �ow anal�

ysis� In Symposium on Principles of Programming Languages� pages �������� January

�����

���� T� Marlowe� B� Ryder� and M� Burke� De�ning �ow sensitivity in data �ow problems�

Research Technical Report lcsr�tr����� Rutgers University� Laboratory of Computer Sci�

ence� July �����

���� D� Maydan� Accurate Analysis of Array References� PhD thesis� Stanford University�

September �����

��



���� H� Mayer and M� Wolfe� Interprocedural alias analysis� Implementation and empirical

results� Software � Practice and Experience� ��	��
����������� November �����

���� E� Morel and C� Renvoise� Interprocedural elimination of partial redundancies� In

S� Muchnick and N� Jones� editors� Program Flow Analysis� Prentice�Hall� Inc�� �����

���� E� Myers� A precise inter�procedural data��ow algorithm� In Symposium on Principles

of Programming Languages� pages �������� January �����

���� T� Nguyen� J� Gu� and Z� Li� An interprocedural parallelizing compiler and its support

for memory hierarchy research� In Languages and Compilers for Parallel Computing�

Lecture Notes in Computer Science� pages ������� Springer�Verlag� August �����

���� P� M� Petersen� Evaluation of Programs and Parallelizing Compilers using Dynamic

Analysis Techniques� PhD thesis� CSRD� University of Illinois� January ����� CSRD

report No� �����

���� A� Platono� Automatic data distribution for massively parallel computers� In Fifth In�

ternational Workshop on Compilers for Parallel Computers� pages �������� June �����

���� C� Polychronopoulos� M� Girkar� M� Haghighat� C� Lee� B� Leung� and D� Schouten�

Parafrase��� An environment for parallelizing� partitionning� synchronizing and schedul�

ing programs on multiprocessors� In International Conference on Parallel Processing�

August �����

���� T� Reps� Solving demand versions of interprocedural analysis problems� In International

Conference on Compiler Construction� pages �������� April �����

���� T� Reps� S� Horwitz� and M� Sagiv� Precise interprocedural data�ow analysis via graph

reachability� In Symposium on Principles of Programming Languages� pages ������

January �����

���� B� Ryder� Constructing the call graph of a program� IEEE Transactions on Software

Engineering� SE��	�
��������� May �����

��



���� V� Sarkar� PTRAN � the IBM parallel translation system� In Parallel Functional

Programming Languages and Compilers� pages �������� ACM Press Frontier Series�

�����

���� M� Sharir and A� Pnuelli� Two approaches to interprocedural data �ow analysis� In

S� Muchnick and N� Jones� editors� Program Flow Analysis� pages �������� Prentice�

Hall� Inc�� �����

���� K� Smith and W� Appelbe� PAT � an interactive Fortran parallelizing assistant tool� In

International Conference on Parallel Processing� volume �� pages ������ �����

���� V� Sreedhar� G� Gao� and Y��F� Lee� A new framework for exhaustive and incremental

analysis using DJ graphs� In International Conference on Programming Language Design

and Implementation� pages �������� May �����

���� E� Stoltz� M� Gelerk� and M� Wolfe� Extended SSA with factored use�def chains to

support optimization and parallelism� In International Conference on System Sciences�

pages ������ �����

���� R� Triolet� P� Feautrier� and F� Irigoin� Direct parallelization of call statements� In ACM

SIGPLAN Symposium on Compiler Construction� pages �������� July �����

���� P� Tu� Automatic Array Privatization and Demand�Driven Symbolic Analysis� PhD

thesis� University of Illinois at Urbana�Champaign� �����

���� Kwangkeun Yi and Williams Ludwell Harrison III� Automatic generation and manage�

ment of interprocedural program analyses� In Symposium on Principles of Programming

Languages� pages �������� January �����

��


