Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Fast 3D shape retrieval method for classified databases

Abstract : Recent investigations illustrate that view-based methods, with pose normalization pre-processing get better performances in retrieving rigid models than other approaches and still the most popular and practical methods in the field of 3D shape retrieval. In this paper we present an improvement of 3D shape retrieval methods based on bag-of features approach. These methods use this approach to integrate a set of features extracted from 2D views of the 3D objects using the SIFT (Scale Invariant Feature Transform) algorithm into histograms using vector quantization which is based on a global visual codebook. In order to improve the retrieval performances, we propose to associate to each 3D object its local visual codebook instead of a unique global codebook. The experimental results obtained on the Princeton Shape Benchmark database, for the BF-SIFT method proposed by Ohbuchi et al. and CM-BOF proposed by Zhouhui et al., show that the proposed approach performs better than the original approach.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00753813
Contributeur : Claire Medrala <>
Soumis le : lundi 19 novembre 2012 - 16:28:33
Dernière modification le : jeudi 24 septembre 2020 - 16:36:01

Identifiants

Citation

El Wardani Dadi, El Mostafa Daoudi, Claude Tadonki. Fast 3D shape retrieval method for classified databases. International Conference on Complex Systems (ICCS'12), Nov 2012, Agadir, Morocco. pp 1-5, ⟨10.1109/ICoCS.2012.6458607⟩. ⟨hal-00753813⟩

Partager

Métriques

Consultations de la notice

434