Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Conditional simulation of a positive random vector subject to max-linear constraints. A geometric perspective

Abstract : Predicting natural phenomena modeled by max-stable random fields with Fréchet margins is not simple because these models do not possess finite first and second order moments. In such situations, a Monte Carlo approach based on conditional simulations can be considered. In this paper we examine a recent algorithm set up by Wang and Stoev to conditionally simulate a max-stable random field with discrete spectrum. Besides presenting this algorithm, we provide it with a geometric interpretation and put emphasis on several implementation details to obviate its combinatorial complexity. Along the way, a number of other critical issues are mentioned that are not often addressed in the current practice of conditional simulations. An illustrative example is given.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00766156
Contributeur : Christian Lantuéjoul <>
Soumis le : lundi 17 décembre 2012 - 17:02:25
Dernière modification le : jeudi 24 septembre 2020 - 16:34:08

Identifiants

  • HAL Id : hal-00766156, version 1

Citation

Christian Lantuéjoul, Francis Maisonneuve, Jean-Noël Bacro, Liliane Bel. Conditional simulation of a positive random vector subject to max-linear constraints. A geometric perspective. Ninth International Geostatistics Congress, Jun 2012, Oslo, Norway. 6 p. ⟨hal-00766156⟩

Partager

Métriques

Consultations de la notice

393