Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Corresponding states method for determination of the viscosity of gases at atmospheric pressure

Abstract : The accuracy and predictability of empirical/semiempirical correlations for evaluation of the physicochemical properties of chemical compounds are of much interest in chemical industry. In this study, our objective is applying the Gene Expression Programming (GEP) mathematical algorithm to propose a correlation based on the corresponding states method to calculate/estimate the gas viscosity of about 1600 chemical compounds (mostly organic) from 81 chemical families at different temperatures and atmospheric pressure. The parameters of the correlation include the temperature, critical temperature, critical pressure, and molecular weight. Around 13 000 experimental gas viscosity data are randomly selected for developing the correlation, and about 8500 data are treated for checking its prediction capability. The obtained statistical parameters including average absolute relative deviations (AARD %) of the results from the experimental data (about 7%) indicate the accuracy and applicability of the presented correlation along with its simplicity compared with the most widely used corresponding states method (with AARD of about 9%) available in open literature.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00796445
Contributeur : Jordane Raisin-Dadre <>
Soumis le : lundi 4 mars 2013 - 11:09:19
Dernière modification le : jeudi 24 septembre 2020 - 17:22:04

Identifiants

Citation

Farhad Gharagheizi, Ali Eslamimanesh, Mehdi Sattari, Amir H. Mohammadi, Dominique Richon. Corresponding states method for determination of the viscosity of gases at atmospheric pressure. Industrial and engineering chemistry research, American Chemical Society, 2012, 51 (7), pp.3179-3185. ⟨10.1021/ie202591f⟩. ⟨hal-00796445⟩

Partager

Métriques

Consultations de la notice

233