Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Industrial and engineering chemistry research Année : 2008

Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm

(1) , (1)
1
Amir H. Mohammadi
  • Fonction : Auteur
  • PersonId : 915863
Dominique Richon
  • Fonction : Auteur
  • PersonId : 915941

Résumé

In this communication, we report an artificial neural network algorithm for estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures. This model eliminates any need for characterization parameters, due to the tendency of sulfurs to react, required in thermodynamic models. To develop this algorithm, reliable experimental data reported in the literature on sulfur content of hydrogen sulfide are used. The developed model is then used to predict independent experimental data (not used in developing the model). It is shown that artificial neural network algorithm can be used as an efficient tool to estimate sulfur content of hydrogen sulfide.

Dates et versions

hal-00797790 , version 1 (07-03-2013)

Identifiants

Citer

Amir H. Mohammadi, Dominique Richon. Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm. Industrial and engineering chemistry research, 2008, 47 (21), pp.8499-8504. ⟨10.1021/ie8004463⟩. ⟨hal-00797790⟩
71 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More