Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm

Amir H. Mohammadi 1 Dominique Richon 1
1 CEP/Fontainebleau
CEP - Centre Énergétique et Procédés
Abstract : In this communication, we report an artificial neural network algorithm for estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures. This model eliminates any need for characterization parameters, due to the tendency of sulfurs to react, required in thermodynamic models. To develop this algorithm, reliable experimental data reported in the literature on sulfur content of hydrogen sulfide are used. The developed model is then used to predict independent experimental data (not used in developing the model). It is shown that artificial neural network algorithm can be used as an efficient tool to estimate sulfur content of hydrogen sulfide.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00797790
Contributeur : Jordane Raisin-Dadre <>
Soumis le : jeudi 7 mars 2013 - 11:13:08
Dernière modification le : jeudi 24 septembre 2020 - 17:22:03

Lien texte intégral

Identifiants

Citation

Amir H. Mohammadi, Dominique Richon. Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm. Industrial and engineering chemistry research, American Chemical Society, 2008, 47 (21), pp.8499-8504. ⟨10.1021/ie8004463⟩. ⟨hal-00797790⟩

Partager

Métriques

Consultations de la notice

190