
HAL Id: hal-00812403
https://minesparis-psl.hal.science/hal-00812403

Submitted on 12 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Methodology for comparison of different wind
power ramp characterization approaches

Arthur Bossavy, Robin Girard, Georges Kariniotakis

To cite this version:
Arthur Bossavy, Robin Girard, Georges Kariniotakis. A Novel Methodology for comparison of different
wind power ramp characterization approaches. EWEA 2013 - European Wind Energy Association
annual event, Feb 2013, Vienna, Austria. 6 p. �hal-00812403�

https://minesparis-psl.hal.science/hal-00812403
https://hal.archives-ouvertes.fr


A NOVEL METHODOLOGY FOR COMPARISON OF DIFFERENT WIND 
POWER RAMP CHARACTERIZATION APPROACHES 

Arthur BOSSAVY*, Robin GIRARD and Georges KARINIOTAKIS 
Center for Processes, Renewable Energies and Energy Systems - MINES ParisTech 

Sophia Antipolis, France 

*Corresponding author : arthur.bossavy@mines-paristech.fr
Telephone : +33.4.93.95.74.80, Fax : +33.4.93.95.75.35 

ABSTRACT 

Wind power forecasting is recognized as a 
means to facilitate large scale wind power 
integration into power systems. Recently, 
focus has been given on developing 
dedicated short-term forecasting 
approaches for the case of large and sharp 
wind power variations, so-called ramps. 
Accurate forecasts of specific ramp 
characteristics (e.g. timing, probability of 
occurrence, etc) are important since the 
related forecast errors may lead to 
potentially large power imbalances, with 
high impact to the power system. Various 
works about ramps' periodicity or 
predictability have led to the development of 
new characterization approaches. The 
evaluation of these approaches has often 
been neglected, leading to potentially 
irrelevant conclusions on ramps 
characteristics, or ineffective forecasting 
approaches. In this work, we propose a 
comprehensive framework for evaluating 
and comparing different characterization 
approaches of wind power ramps.  

1. INTRODUCTION

Wind power forecasting is recognized as a 
means to facilitate large scale wind power 
integration into power systems. 
Considerable R&D in the last 25 years 
resulted in the development of numerous 
approaches (for a literature overview, we 
refer to [1], [2]). At operational level, the 
applied models are in general of good 
accuracy. Shortcomings relate often to 
challenging and extremes situations, but 
also to specialized forecasts for the various 
business processes and their integration into 
the decision making tools.  

Recently, focus has been given on 

developing dedicated short-term forecasting 
approaches for the case of large and sharp 
wind power variations, so-called ramps [3], 
[4], [5], [6], [7], [8]. Those situations are 
particularly challenging since the related 
forecast errors, e.g. errors in the ramps 
timing (phase errors), may lead to potentially 
large power imbalances, with high impact to 
the power system. Often the aim of such 
approaches is improving forecasts of 
specific ramp characteristics like the ramps 
timing or probability of occurrence. In the 
related literature however, we observe that 
there is not a standard definition of what is a 
ramp. Various works about ramps' 
periodicity or predictability have led to the 
development of new characterization 
approaches [3], [7], [9]. The evaluation of 
these approaches has often been neglected, 
leading to potentially irrelevant conclusions 
on ramps characteristics, or ineffective 
forecasting approaches. 

An approach dedicated to the 
characterization of ramps can be approved 
only if it is evaluated according to a certain 
protocol. In the edge detection literature, the 
development and evaluation of such an 
approach generally involve an edge

1
 model

and evaluation criteria (e.g. Canny's criteria 
[10]). Such a paradigm does not exist in the 
wind energy literature.  

In this work, we propose a comprehensive 
framework for evaluating and comparing 
different characterization approaches of 
wind power ramps. As a first step we 
introduce a theoretical model of a ramp 
inspired from the edge detection literature. 
The proposed model incorporates some 
important aspects of the wind power 

1 In the edge detection literature, the term "edge" 
is commonly used  to denote a sharp and large 
level change in a signal.   



production process to reflect non-stationarity 
and bounded aspects of the process, as well 
as the random nature of ramp occurrences. 
Then, adequate evaluation criteria from the 
signal processing and statistical literature 
are introduced to assess the ability of an 
approach to reliably estimate ramp 
characteristics (i.e. timing, intensity). Based 
on simulations from this model, and using 
the evaluation criteria, we study the 
performances of different ramp detection 
filters and multi-scale characterization 
approaches.  

The paper is organized as follows: in 
Section 2, we describe the proposed ramp 
model and the performance criteria which 
constitute our evaluation framework. In 
Section 3, we study the performances of 
state-of-the-art filters and scale selection or 
combination procedures, in detecting and 
localizing ramps. Finally, some summary 
conclusions are given in Section 4. 

2. METHODOLOGY

In this section, we describe the proposed 
evaluation framework, namely the proposed 
ramp model and the evaluation criteria of a 
detection approach. 

The proposed ramp model 

Our model is based on the following 
decomposition: 

ttt Rp 

where pt denotes the production at instant t, 

Rt a ramp profile defining the geometry of 

ramps to be detected and t a noise. 

Ramps are modeled as segments joining 
constant production episodes. To represent 
the random nature in the occurrence of wind 

power ramps, the durations Ti of ramps and 

in-between ramps are considered random 
variables. We assume them to be 
independent truncated exponential 
variables. The simulation of a ramp profile 

with N increasing and N decreasing ramps 

comes from the sampling of duration 

variables Ti to generate N elementary 

profiles, which at last are concatenated. An 

elementary profile  
  

is defined by:     

 
  = 

0  if t Є [0, T1] 

  
        if t Є [T1, T1+T2] 

A       if t Є [T1+T2, T1+T2+T3] 

  
  

         if t Є [T-T4, T] 

where T=T1+T2+T3+T4. In the remaining 

of this paper, we will assume that increasing 

and decreasing ramp durations T2 and T4 

are identically distributed, while null 
production episodes are in average longer 

than high (i.e. equal to A) production 

episodes by a factor c, i.e. E[T1]=cE[T3], 

c 1. 

To reproduce the fastest fluctuations of wind 

power production, we add white noise   
with truncated Gaussian distribution to the 

ramp profile Rt. Wind power is a non-

stationary process whose variability 
increases with the power production level. 
After some data analysis, we chose to 
model the standard deviation of noise (i.e. of 
production) as a piecewise linear function 

                       

where a1, a2 > 0, p denotes the power 

production level represented by the ramp 

profile Rt, and p1 the level at which the 

variability stop increasing and remains 
constant. 

For a full discussion about the model’s 
assumptions and experimental conditions, 
we refer to [11]. A simulation example from 
the proposed model can be seen in Figure 
1. 

Evaluation criteria 

A ramp detection approach is based on a 
measure of wind power variations. From 
such a measure it is possible to characterize 
each variation with some parameters, e.g. 
the variation timing, amplitude, duration, etc.  

We consider a characterization of a variation 

restricted to two parameters: its timing tI and 



intensity I. The latter is a combined measure 

of the amplitude and sharpness nature of a 
variation. Both these parameters can be 
defined from the local maxima in the 
absolute response of a derivative filter for 
instance [7]. Truth is whatever the tools a 
detection approach is based on (e.g. filter, 
scales combination or selection procedure), 
and the characterization of variations it 
assumes, it should be possible to limit such 
a characterization to the two considered 
parameters. 

Then, evaluating a ramp detection approach 
easily translates to evaluating a 
classification problem. To ramps and 
variations due to noise as simulated from 
our model, any detection approach should 
respectively associate high and low absolute 

intensity values |I|. Thus, once a 

thresholding procedure is introduced, it 
should constitute a good classifier of 
variations: 

            

τ being a threshold set so as to classify high 

intensity variations as ramps. Because we 
simulate ramp occurrence from a model, we 
know exactly which variations of a signal are 
ramps or not. We are then able to associate 

to each variation (tI, I), and to its 

classification result by a detection approach 

fτ(I), the real class of variation it belongs to: 

Y = 1 if it is actually a ramp, 0 otherwise. 

Of course the detection performance of an 
approach also relies on its ability to localize 
well ramps. The right classification of a 
ramp, based on the associated intensity 
value, will be so only if the ramp has been 
localized not too far from its true position.  

Finally, besides a measure of the 
localization error, the evaluation of a 
detection approach may rely on one of the 
numerous criteria available in the statistical 
classication literature. In the following, we 
shall use the filter’s response signal-to-noise 
ratio (SNR) proposed by Canny [10], which 
can be interpreted as a classification 
criterion. We shall also use the area under 
the ROC curve (AUC). The AUC allows to 
sum up to one number the whole 
performance of a detection approach, 
generally characterized by a tradeoff 
between the hit (well detected) and false 
alarm (wrongly detected) ramp rates. For an 
introduction to the ROC and AUC criteria we 
refer to [12].  

3. RESULTS

In this section, we give some results 
obtained in the evaluation of different filters 
and scales combination and selection 
procedures encountered in the edge 
detection and wind power ramp literature. 

Filters performance 

We evaluated the performance of three 
different filters: the Prewitt filter (DOB, see 
[7]), the first derivative of a Gaussian (FDG), 

Figure 1 : Simulation example from the proposed ramp model of a 7 days long production episode.  

The ramps have here an amplitude of A = 80% of the nominal power Pn. In average: ramps are 1/2 h

long, decreasing ramps are separated from increasing ramps by 12 h, while on the other hand increasing 

ramps are separated from decreasing ramps by half less time, i.e. c = 2. Noise parameters controlling 

the increase of variability with power production level have been set to the following values: a1 = 5 %,

a2 = 20 % and p1 = 25% of Pn (see the text for more details).



Figure 2: Detection and localization performances of 3 state-of-the-art ramp detection filters: 2 from the 

signal processing literature (DOB and FDG), and one from the wind energy literature (MaxMin). The 

absence of smoothing operation in the MaxMin filter makes it sensitive to noise and unable to 

discriminate of localize well ramps.

and a filter (MaxMin) used in the wind 
energy community (see [3] and [6]), which 
measures a signal’s variations through 
computing the difference between its 
maximum and minimum values in a sliding 
window.  

In Figure 2, one can see the detection and 
localization performances of the three 
considered filters depending on their width. 
Usual derivative filters from the signal 
processing literature (DOB, FDG) combine a 
smoothing to the differentiation operation so 
as to reduce the impact of noise in 
measuring a signal’s variations. Then, the 
filter width controls a tradeoff between noise 
reduction and limiting the perturbation due to 
neighboring elements of a signal (e.g. 
nearby ramps) in the detection of a ramp. It 
explains the pattern we can observe in 
Figure 2 about DOB and FDG performances 
first increasing before decreasing with the 
filters width. Because of its adequacy to the 
geometry of ramps considered in our model, 
the DOB filter gets slightly better detection 
performances. On the other hand, the 
particular shape (with thinner tails) of the 
FDG filter makes it less sensitive to 
neighboring ramps, resulting in better 
localization performances. 

The MaxMin filter does not benefit from 
noise reduction while increasing its width; it 
just becomes more sensitive to it and 
neighboring ramps. That explains its 

stagnating or continuously decreasing 
performances. 

Multi-scale approaches performance 

In edge detection, selecting appropriate 
scales is paramount. The choice of one or 
several scales is generally made so as to 
best control the tradeoff between reducing 
noise and limiting perturbation in detecting 
neighboring edges. In our work, we studied 
the performances of three different scale 
selection and combination procedures: the 
use of an unique scale (uniscale) for the 
detection of all ramps in a signal, the (local) 
selection of a scale maximizing the filter 
response to a particular ramp as proposed 
in [13] (here denoted Lindeberg), and finally 
the use of several scales to define a 
measure of variations based on the sum of 
the respective filter responses as in [9] (here 
denoted Gallego).  

Detection and localization performances of 
the considered scale selection and 
combination procedures, as a function of the 
inter-ramp average duration, are shown in 
Figure 3. One can notice that the scale 
selection procedures (particularly the local 
one Lindeberg) get better detection 
performances than the scales combination 
procedure Gallego, especially for closely 
following ramps. 

On the other hand, a combination of several 



Figure 3: Detection and localization performances of three different scale selection and combination 

procedures: considering an unique scale (uniscale), with a local selection of a scale (Lindeberg) and with 

a “sum” of scales (Gallego, see the text for more details). If the selection procedures get better detection 

performances than the combination one, especially for closely following ramps, the hierarchy is 

somewhat reversed for the case of localization performances.

scales may offer better localization 
performances, particularly for such closely 
following ramps. 

Further analysis of the results showed that 
the better detection performances of scale 
selection over scales combination 
procedures were particularly true in case of 
low signal-to-noise ratio (defined through the 
joint consideration of different values of 
ramp amplitude, duration and noise 
intensity). Again, for a detailed description of 
the results and more insight about the 
different approaches, we refer to [11]. 

4. CONCLUSIONS

The development of dedicated short-term 
forecasting approaches has undertaken the 
development of new ramp characterization 
approaches. However, those approaches 
have not been yet evaluated and compared 
to standard procedures like the ones 
introduced in the edge detection literature. 
Without a rigorous assessment of those 
approaches, we cannot ensure they provide 
reliable information about ramp 
characteristics.  

In this paper, we proposed a framework to 
evaluate and compare different ramp 
characterization approaches. The proposed 
framework is based on a theoretical model 
of ramps and associated criteria for the 
evaluation of approaches in the detection of 

ramps and estimation of the latter 
characteristics. Within this framework, we 
evaluated the relevance of some practical 
choices encountered in the wind energy 
literature and compared them to those from 
the signal processing literature. Among 
other, the results of our work show that the 
MaxMin filter often used to measure wind 
power variations performs very poorly when 
used for ramp detection. Filters derived from 
the signal processing literature should be 
preferred. Local scale selection procedures 
also turned out to be promising in detecting 
ramps with recurrent, random occurrence. 
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