Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

History matching of petroleum reservoir models by the ensemble Kalman filter and parameterization methods

Abstract : The Ensemble Kalman Filter (EnKF) has been successfully applied in petroleum engineering during the past few years to constrain reservoir models to production or seismic data. This sequential assimilation method provides a set of updated static variables (porosity, permeability) and dynamic variables (pressure, saturation) at each assimilation time. However, several limitations can be pointed out. In particular, the method does not prevent petrophysical realizations from departing from prior information. In addition, petrophysical properties can reach extreme (non-physical) values. In this work, we propose to combine the EnKF with two parameterization methods designed to preserve second-order statistical properties: pilot points and gradual deformation. The aim is to prevent the departure of the constrained petrophysical property distributions from prior information. Over/under estimations should also be avoided. The two algorithms are applied to a synthetic case. Several parameter configurations are investigated in order to identify solutions improving the performance of the method.
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00818367
Contributeur : Hans Wackernagel <>
Soumis le : vendredi 26 avril 2013 - 16:51:05
Dernière modification le : jeudi 24 septembre 2020 - 16:34:05

Lien texte intégral

Identifiants

Citation

Leila Heidari, Véronique Gervais, Mickaële Le Ravalec, Hans Wackernagel. History matching of petroleum reservoir models by the ensemble Kalman filter and parameterization methods. Computers & Geosciences, Elsevier, 2012, 55 (June 2013), pp.84-95. ⟨10.1016/j.cageo.2012.06.006⟩. ⟨hal-00818367⟩

Partager

Métriques

Consultations de la notice

422