J. R. Cahoon, Q. Li, and N. L. Richards, Microstructural and processing factors influencing the formation of annealing twins, Materials Science and Engineering: A, vol.526, issue.1-2, pp.56-61, 2009.
DOI : 10.1016/j.msea.2009.07.021

Q. Li, J. R. Cahoon, and N. L. Richards, On the calculation of annealing twin density, Scripta Materialia, vol.55, issue.12, pp.1155-1158, 2006.
DOI : 10.1016/j.scriptamat.2006.08.013

C. S. Pande, Study of annealing twins in fcc metals and alloys, Metallurgical Transactions A, vol.52, issue.11, pp.2891-2896, 1990.
DOI : 10.1007/BF02647209

N. Bozzolo, S. Jacomet, and R. E. Logé, Fast in-situ annealing stage coupled with EBSD: A suitable tool to observe quick recrystallization mechanisms, Materials Characterization, vol.70, pp.28-32, 2012.
DOI : 10.1016/j.matchar.2012.04.020

URL : https://hal.archives-ouvertes.fr/hal-00709665

D. G. Brandon, The structure of high-angle grain boundaries, Acta Metallurgica, vol.14, issue.11, pp.1479-1484, 1966.
DOI : 10.1016/0001-6160(66)90168-4

M. Meyers, Interface Migration and Control of Microstructure, pp.17-21, 1984.

J. Li, S. J. Dillon, and G. S. Rohrer, Relative grain boundary area and energy distributions in nickel, Acta Materialia, vol.57, issue.14, pp.4304-4311, 2009.
DOI : 10.1016/j.actamat.2009.06.004

D. L. Olmsted, S. M. Foiles, and E. A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy, Acta Materialia, vol.57, issue.13, pp.3694-3703, 2009.
DOI : 10.1016/j.actamat.2009.04.007

. Fig, Thick, red lines denote ?3 boundaries; thick blue lines denote ?9 boundaries; thin black lines represent normal high misorientation boundaries