Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Journal articles

Dolomite effect on borosilicate glass alteration

Matthieu Debure 1, 2 Pierre Frugier 2 Laurent de Windt 1 S. Gin 2 
2 LCLT - Laboratoire d'Etudes du Comportement à Long Terme des matériaux de conditionnement
DE2D - Département de recherche sur les technologies pour l'enrichissement, le démantèlement et les déchets : DEN/DE2D
Abstract : Dolomite (CaMg(CO3)2) is one of the common rock-forming minerals in many geological media, in particular in clayey layers that are currently considered as potential host formations for a deep radioactive waste disposal facility. Magnesium in solution is one of the elements known to potentially enhance the alteration of nuclear glasses. The alteration of borosilicate glasses with dolomite as a Mg-bearing mineral source was investigated for 8 months in batch tests at 90 °C. Glass composition effects were investigated through two compositions (SiBNaAlCaZrO and SiBNaAlZrO) differing in their Ca content. The Ca-rich glass alteration is slightly enhanced in the presence of dolomite compared to the alteration observed in pure water. This greater alteration is explained by the precipitation of Mg silicate phases on the dolomite and glass surfaces. In contrast, the Ca-free glass alteration decreases in the presence of dolomite compared to the alteration observed in pure water. This behavior is explained by Ca incorporation in the amorphous layer (formed during glass alteration) coming from dolomite dissolution. Calcium acts as a layer reorganizer and limits glass alteration by reducing the diffusion of reactive species through the altered layer. Modeling was performed using the GRAAL model implemented within the CHESS/HYTEC geochemical code to discriminate and interpret the mechanisms involved in glass/dolomite interactions. Magnesium released by dolomite dissolution reacts with silica provided by glass alteration to form Mg silicates. This reaction leads to a pH decrease. The main mechanism controlling glass alteration is the ability of dolomite to dissolve. During the experiment the quantities of secondary phases formed were very small, but for longer time scales, this mechanism could supply sufficient Mg in solution to form large amounts of Mg silicates and sustain glass alteration. The ability of the GRAAL model to reproduce the concentrations of elements in solution and solid phases regardless of the amount of dolomite and the glass composition strongly supports the basic modeling hypothesis.
Complete list of metadata
Contributor : Laurent De Windt Connect in order to contact the contributor
Submitted on : Monday, May 13, 2013 - 7:06:58 PM
Last modification on : Wednesday, November 17, 2021 - 12:31:15 PM


  • HAL Id : hal-00822035, version 1


Matthieu Debure, Pierre Frugier, Laurent de Windt, S. Gin. Dolomite effect on borosilicate glass alteration. Applied Geochemistry, Elsevier, 2013, 33, pp.237-251. ⟨hal-00822035⟩



Record views