Classification-Driven Stochastic Watershed: Application to Multispectral Segmentation

Abstract : The aim of this paper is to present a general methodology based on multispectral mathematical morphology in order to segment multispectral images. The methods consists in computing a probability density function pdf of contours conditioned by a spectral classification. The pdf is conditioned through regionalized random balls markers thanks to a new algorithm. Therefore the pdf contains spatial and spectral information. Finally, the pdf is segmented by a watershed with seeds (i.e., markers) coming from the classification. Consequently, a complete method, based on a classification-driven stochastic watershed is introduced. This approach requires a unique and robust parameter: the number of classes which is the same for similar images. Moreover, an efficient way to select factor axes, of Factor Correspondence Analysis (FCA), based on signal-to-noise ratio on factor pixels is presented.
Liste complète des métadonnées
Contributeur : Bibliothèque Mines Paristech <>
Soumis le : lundi 13 mars 2017 - 14:39:02
Dernière modification le : lundi 25 février 2019 - 10:07:24
Document(s) archivé(s) le : mercredi 14 juin 2017 - 13:41:42


Fichiers produits par l'(les) auteur(s)


Copyright (Tous droits réservés)


  • HAL Id : hal-00830667, version 1


Guillaume Noyel, Jesus Angulo, Dominique Jeulin. Classification-Driven Stochastic Watershed: Application to Multispectral Segmentation. CGIV 2008/MCS'08 4th European Conference on Colour in Graphics, Imaging, and Vision and 10th International Symposium on Multispectral Colour Science, Jun 2008, Terrassa - Barcelona, Spain. pp.471-476. ⟨hal-00830667⟩



Consultations de la notice


Téléchargements de fichiers