Morphological-based adaptive segmentation and quantification of cell assays in high content screening - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2008

Morphological-based adaptive segmentation and quantification of cell assays in high content screening

(1) , (2)
1
2
Jesus Angulo
Béatrice Schaack

Résumé

In fluorescence-labelled cell assays for high content screening applications, image processing software is necessary to have automatic algorithms for segmenting the cells individually and for quantifying their intensities, size/shape parameters, etc. Mathematical morphology is a non-linear image processing technique which is proven to be a very powerful tool in biomedical microscopy image analysis. This paper presents a morphological methodology based on connected filters, watershed transformation and granulometries for segmenting cells of different size, contrast, etc. In particular, the performance of the algorithms is illustrated with cell images from a toxicity assay in three-labels (Hoechst, EGFP, Phalloi'din) on nanodrops cell-on-chip format.
Fichier non déposé

Dates et versions

hal-00833818 , version 1 (13-06-2013)

Identifiants

Citer

Jesus Angulo, Béatrice Schaack. Morphological-based adaptive segmentation and quantification of cell assays in high content screening. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008, May 2008, Paris, France. pp.360-363, ⟨10.1109/ISBI.2008.4541007⟩. ⟨hal-00833818⟩
128 Consultations
1 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More