
HAL Id: hal-00833992
https://minesparis-psl.hal.science/hal-00833992

Submitted on 14 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dedukti : a Universal Proof Checker
Ronan Saillard

To cite this version:
Ronan Saillard. Dedukti : a Universal Proof Checker. Foundation of Mathematics for Computer-Aided
Formalization Workshop, Jan 2013, Padova, Italy. �hal-00833992�

https://minesparis-psl.hal.science/hal-00833992
https://hal.archives-ouvertes.fr


Dedukti: a Universal Proof Checker

Ronan Saillard
MINES ParisTech

ronan.saillard@cri.ensmp.fr

Context The success of formal methods both as tools of practical importance
and as objects of intellectual curiosity, has spawned a bewildering variety of
software systems to support them. While the field has developed to maturity
in academia and has registered some important successes in the industry, the
full benefit of formal methods in an industrial setting remains largely untapped.
We submit that a lack of standards and easy interoperability in the field is one
explanation to this state of affairs.

The λΠ-calculus modulo To address this issue we propose the λΠ-calculus
modulo as a universal proof language. This calculus, introduced by Cousineau
and Dowek [5], is a dependent typed λ-calculus where the definitional equality
has been generalized to an arbitrary congruence generated by rewrite rules. Our
opinion is that this formalism is well suited for encoding foreign logics and make
them cooperate. Indeed, by allowing the addition of user-defined rewrite rules,
logics benefit from shallower encodings and do not lose their computational
content.

To support this language we have developed a new type checker called Dedukti [3].

A type-checker generator In order to provide an efficient and yet simple
type checker for the λΠ-calculus modulo we chose to implement it as a type
checker generator: a parser/front-end generates a specialized type checker in a
target language which is then run. This scheme has two key advantages:

First it conveniently allows us to sidestep the problem of implementing alpha-
equivalence and substitution by making use of Higher Order Abstract Syntax
(HOAS).

Second, it permits us to make use of normalization by evaluation (NbE)
which is one particularly efficient way to implement normalization scheme that
alternates phases of weak reduction (i.e. evaluation) and reification phases (or
readback phases [6]). The idea is to use the application of the target language
to code the β-reduction or any other rewrite rules.

A Just-in-Time compiler as our backend As we intend to be a universal
proof checker we need to be versatile. In particular some logics allow proofs to
embed computational content and some do not. This is a real challenge because
the efficiency of the normalization strategy highly depends on the computational
content of the proof term. Indeed in the first case λ-terms should be compiled
and in the latter λ-terms should be interpreted. The matter of choosing the right



strategy is very difficult but it is already adressed by the Just-in-Time compiler
community, so we chose to rely on the state-of-the-art LuaJIT [8] compiler, as
our backend.

A Bidirectional and Context-Free type checking We use a domain-free
representation of terms as introduced in [1], meaning that abstractions may not
be annotated by the type of the variable that they bind. This information is not
necessary if one adopts a bidirectional typing discipline, a technique going back
to [4] which splits the usual type judgments into two forms: checking judgments
and synthesis judgments. Hence, input terms are smaller at no cost to the
complexity or size of the type checker.

When using HOAS, abstractions are encoded as functions of the implemen-
tation language. They are therefore opaque structures that cannot be directly
analyzed. Functions are black boxes whose only interface is that they can be
applied. In HOAS, it is therefore necessary to draw the parameter/variable
distinction common in presentations of first-order logic — variables are always
bound and parameters are variables that are free. This distinction is made
explicit by the use of context-free type checking [2].

Features and Translators Dedukti features also dot-pattern à la Agda [7]
which permits to avoid type checking subterms well-typed by construction,
opaque definitions and a basic notion of modules. We provide a translator
to the λΠ-calculus modulo for the Calculus of Inductive Construction as imple-
mented by the Coq proof assistant, and a translator for the Higher Order Logic
as implemented by HOL/Isabelle. We plan to develop translations for the logic
of PVS and the set theory of Atelier B.

References

[1] Gilles Barthe and Morten Heine Sørensen. Domain-free pure type systems. In J.
Funct. Program., pages 9–20. Springer, 1993.

[2] Mathieu Boespflug. Conception d’un noyau de vérification de preuves pour le λΠ-
calcul modulo. PhD thesis, Ecole polytechnique, January 2011.

[3] Mathieu Boespflug, Quentin Carbonneaux, Olivier Hermant, and Ronan Saillard.
Dedukti : https://www.rocq.inria.fr/deducteam/dedukti/index.html.

[4] Thierry Coquand. An algorithm for type-checking dependent types. Sci. Comput.
Program., 26(1-3):167–177, 1996.

[5] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-
pi-calculus modulo. In Simona Ronchi Della Rocca, editor, TLCA, volume 4583 of
LNCS, pages 102–117. Springer, 2007.

[6] B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In
Mitchell Wand and Simon L. Peyton Jones, editors, ICFP, pages 235–246. ACM,
2002.

[7] Ulf Norell. Dependently typed programming in agda. In Pieter W. M. Koop-
man, Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional
Programming, volume 5832 of LNCS, pages 230–266. Springer, 2008.

[8] The LuaJIT Project. http://www.http://luajit.org/.


