Skip to Main content Skip to Navigation
Conference papers

From Scalar-Valued Images to Hypercomplex Representations and Derived Total Orderings for Morphological Operators

Abstract : In classical mathematical morphology for scalar images, the natural ordering of grey levels is used to define the erosion/dilation and the derived operators. Various operators can be sequentially applied to the resulting images always using the same ordering. In this paper we propose to consider the result of a prior transformation to define the imaginary part of a complex image, where the real part is the initial image. Then, total orderings between complex numbers allow defining subsequent morphological operations between complex pixels. In this case, the operators take into account simultaneously the information of the initial image and the processed image. In addition, the approach can be generalised to the hypercomplex representation (i.e., real quaternion) by associating to each image three different operations, for instance a directional filter. Total orderings initially introduced for colour quaternions are used to define the derived morphological transformations. Effects of these new operators are illustrated with different examples of filtering.
Document type :
Conference papers
Complete list of metadata

https://hal-mines-paristech.archives-ouvertes.fr/hal-00834036
Contributor : Bibliothèque Mines Paristech Connect in order to contact the contributor
Submitted on : Thursday, June 13, 2013 - 11:36:11 PM
Last modification on : Thursday, September 24, 2020 - 4:38:03 PM

Links full text

Identifiers

Citation

Jesus Angulo. From Scalar-Valued Images to Hypercomplex Representations and Derived Total Orderings for Morphological Operators. 9th International Symposium on Mathematical Morphology and Its Application to Signal and Image Processing, ISMM 2009, Aug 2009, Groningen, Netherlands. pp.238-249, ⟨10.1007/978-3-642-03613-2_22⟩. ⟨hal-00834036⟩

Share

Metrics

Record views

1176