Statistical Shape Modeling Using Morphological Representations

Abstract : The aim of this paper is to propose tools for statistical analysis of shape families using morphological operators. Given a series of shape families (or shape categories), the approach consists in empirically computing shape statistics (i.e., mean shape and variance of shape) and then to use simple algorithms for random shape generation, for empirical shape confidence boundaries computation and for shape classification using Bayes rules. The main required ingredients for the present methods are well known in image processing, such as watershed on distance functions or log-polar transformation. Performance of classification is presented in a well-known shape database.
Type de document :
Communication dans un congrès
20th International Conference on Pattern Recognition (ICPR), Aug 2010, Istanbul, Turkey. IEEE, pp.3537-3540, 2010, 〈10.1109/ICPR.2010.863〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-00834442
Contributeur : Bibliothèque Mines Paristech <>
Soumis le : samedi 15 juin 2013 - 10:01:53
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : lundi 16 septembre 2013 - 03:05:09

Fichier

VelascoAngulo_ICPR2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Santiago Velasco-Forero, Jesus Angulo. Statistical Shape Modeling Using Morphological Representations. 20th International Conference on Pattern Recognition (ICPR), Aug 2010, Istanbul, Turkey. IEEE, pp.3537-3540, 2010, 〈10.1109/ICPR.2010.863〉. 〈hal-00834442〉

Partager

Métriques

Consultations de
la notice

155

Téléchargements du document

129