Efficient statistical/morphological cell texture characterization and classification - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2012

Efficient statistical/morphological cell texture characterization and classification

(1) , (1)
1

Résumé

This paper presents the different steps for an automatic fluorescence-labelled cell classification method. First a data features study is discussed in order to describe cell texture by means of morphological and statistical texture descriptors. Then, results on supervised classification using logistic regression, random forest and neural networks, for both morphological and statistical descriptors, is presented. We propose a final consolidated classifier based on a weighted probability for each class, where the weights are given by the empirical classification performances. The method is evaluated on ICPR'12 HEp-2 dataset contest.
Fichier principal
Vignette du fichier
EfficientStatisticalMorphologicalCellTextureCharacterizationAndClassification.pdf (93.56 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00834446 , version 1 (15-06-2013)

Identifiants

  • HAL Id : hal-00834446 , version 1

Citer

Guillaume Thibault, Jesus Angulo. Efficient statistical/morphological cell texture characterization and classification. 21th International Conference on Pattern Recognition (ICPR), Nov 2012, Tsukuba, Japan. pp.2440-2443. ⟨hal-00834446⟩
144 Consultations
297 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More