J. Berkson, Application of the logistic function to bioassay, Journal of the American Statistical Association, vol.39, pp.357-365, 1944.

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

. Sabatini, Cellprofiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biology, vol.7, p.100, 2006.

A. Chu, C. Sehgal, and J. Greenleaf, Use of gray value distribution of run lengths for texture analysis, Pattern Recognition Letters, vol.11, issue.6, pp.415-419, 1990.
DOI : 10.1016/0167-8655(90)90112-F

M. Galloway, Texture analysis using gray level run lengths, Computer Graphics and Image Processing, vol.4, issue.2, pp.172-179, 1975.
DOI : 10.1016/S0146-664X(75)80008-6

R. M. Haralick, Statistical and structural approaches to texture, Proceedings of the IEEE, pp.786-804, 1979.
DOI : 10.1109/PROC.1979.11328

P. Maragos, Pattern spectrum and multiscale shape representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.701-716, 1989.
DOI : 10.1109/34.192465

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, vol.5, issue.4, pp.115-133, 1943.
DOI : 10.1007/BF02478259

B. Newmann and T. Walker, Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes, Nature, vol.554, issue.7289, pp.721-728, 2012.
DOI : 10.1038/nature08869

P. Perner, H. Perner, and B. Müller, Texture classification based on random sets and its application to hep-2 cells, IEEE International Conference on Image Processing (ICIP), pp.406-411, 2002.

G. Thibault, J. Angulo, and F. Meyer, Advanced statistical matrices for texture characterization: Application to DNA chromatin and microtubule network classification, 2011 18th IEEE International Conference on Image Processing, pp.53-56, 2011.
DOI : 10.1109/ICIP.2011.6116401

URL : https://hal.archives-ouvertes.fr/hal-00833529

G. Thibault, B. Fertil, C. Navarro, S. Pereira, P. Cau et al., Texture indexes and gray level size zone matrix. application to cell nuclei classification, Pattern Recognition and Information Processing (PRIP), pp.140-145, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01499715

G. M. Weiss and F. Provost, Learning when training data are costly: The effect of class distribution on tree induction, Artificial Intelligence Research, vol.19, pp.315-354, 2003.