Parameters Selection Of Morphological Scale-Space Decomposition For Hyperspectral Images Using Tensor Modeling

Abstract : Dimensionality reduction (DR) using tensor structures in morphological scale-space decomposition (MSSD) for HSI has been investigated in order to incorporate spatial information in DR.We present results of a comprehensive investigation of two issues underlying DR in MSSD. Firstly, information contained in MSSD is reduced using HOSVD but its nonconvex formulation implicates that in some cases a large number of local solutions can be found. For all experiments, HOSVD always reach an unique global solution in the parameter region suitable to practical applications. Secondly, scale parameters in MSSD are presented in relation to connected components size and the influence of scale parameters in DR and subsequent classification is studied.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-00834484
Contributeur : Bibliothèque Mines Paristech <>
Soumis le : samedi 15 juin 2013 - 15:28:31
Dernière modification le : lundi 12 novembre 2018 - 10:55:48
Document(s) archivé(s) le : lundi 16 septembre 2013 - 04:04:44

Fichier

VelascoAngulo_SPIE10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Santiago Velasco-Forero, Jesus Angulo. Parameters Selection Of Morphological Scale-Space Decomposition For Hyperspectral Images Using Tensor Modeling. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, May 2010, Orlando, United States. 12 p., ⟨10.1117/12.850171⟩. ⟨hal-00834484⟩

Partager

Métriques

Consultations de la notice

238

Téléchargements de fichiers

130