Skip to Main content Skip to Navigation
Conference papers

Stochastic Morphological Filtering and Bellman-Maslov Chains

Abstract : This paper introduces a probabilistic framework for adaptive morphological dilation and erosion. More precisely our probabilistic formalization is based on using random walk simulations for a stochastic estimation of adaptive and robust morphological operators. Hence, we propose a theoretically sound morphological counterpart of Monte Carlo stochastic filtering. The approach by simulations is inefficient but particularly tailorable for introducing different kinds of adaptability. From a theoretical viewpoint, stochastic morphological operators fit into the framework of Bellman-Maslov chains, the ( max , + )-counterpart of Markov chains, which the basis behind the efficient implementations using sparse matrix products.
Complete list of metadata
Contributor : Bibliothèque MINES ParisTech Connect in order to contact the contributor
Submitted on : Monday, June 17, 2013 - 9:10:05 AM
Last modification on : Wednesday, November 17, 2021 - 12:27:09 PM

Links full text



Jesus Angulo, Santiago Velasco-Forero. Stochastic Morphological Filtering and Bellman-Maslov Chains. 11th International Symposium, ISMM 2013, May 2013, Uppsala, Sweden. pp.171-182, ⟨10.1007/978-3-642-38294-9_15⟩. ⟨hal-00834635⟩



Record views