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Abstract. In this paper, nonlocal mathematical morphology operators
are introduced as a natural extension of nonlocal-means in the max-plus
algebra. Firstly, we show that nonlocal morphology is a particular case
of adaptive morphology. Secondly, we present the necessary properties to
have algebraic properties on the associated pair of transformations. Fi-
nally, we recommend a sparse version to introduce an e�cient algorithm
that computes these operators in reasonable computational time.

1 Introduction

Mathematical morphology is an approach to image analysis that characterises
an image by transformations with simple geometrical interpretation [23]. The
original image, denoted by I , is studied by its interaction with small subsets,
named structuring elements (SEs), obtained by convolution in the max-plus al-
gebra [9]. It has been applied successfully to a large number of �elds including
biomedical microscopy, material science, remote sensing, and medical imaging.
The classical approach is characterised by two main properties [21]: (1)SE is
�xed, i.e., does not depend on the spatial position at which it is centred; (2)
the basic morphological operations are invariant under translation. This idea
has been extended to grey scale images, using a complete lattice formulation
[23]. This paper deals with a case ofadaptive mathematical morphology. Adap-
tive mathematical morphology refers to morphological �ltering techniques that
adjust the SEto the local context of the image. The approach in this paper is
based on the adaptive morphology framework, but where the local structuring
element is \estimated" taking into consideration the whole image. We thus re-
fer it as a \nonlocal" approach, following the terminology initiated in [1]. The
term of \nonlocal morphology" has been already considered in previous works.
On the one hand, Salembier in [22] proposed a straightforward generalisation of
nonlocal means �lter to morphological �lters. As we will discuss, our starting
point is similar, however the proposed non local structuring function as well as
the proposed algebraic framework is totally coherent with classical morphologi-
cal adjunction theory. On the other hand, Ta et al. [25] introduced a formalism
of graph-based nonlocal morphology by generalising the PDE of dilation and
erosion. The nonlocal PDE is solved using numerical methods which includes
nonlocal distances as weights. It is obvious that such PDE-based approach does



not induces a couple of adjoint dilation and erosion, and consequently their prod-
ucts do not involve openings and closings in the algebraic sense. We begin with
a review of the extensive literature on adaptive mathematical morphology in
Section 2. Section 3 covers the development of the nonlocal mathematical mor-
phology. We introduce a simple concept of neighbour system for an image, which
allow us to have algebraic morphological transformations. Section 4 introduces
the idea of sparse nonlocal morphology and e�cient implementations. Finally,
Section 5 concludes the paper with some examples and relevant conclusions.

2 Adaptive mathematical morphology

Basic De�nitions. Mathematical morphology considers an imageI as a nu-
merical function from the \spatial" space E to a \spectral" space F. In the case
of grey-level images,E is a subset of the EuclideanRn or the discrete spaceZn

(n=2 for 2D images, n=3 for 3D images), considered as thesupport spaceof the
image, andF is a set of grey-levels, corresponding to thespace of valuesof the
image. It is assumed thatF = R = R [ f�1 ; + 1g or Z = Z [ f�1 ; + 1g , or
more speci�cally F is a closed subset ofR, for instance F = [ a; b] for a; b 2 R.
Thus, a grey-level image is represented by a function,

I :
�

E ! F
x 7! I (x)

(1)

i.e., I 2 Fun(E; F), where Fun(E; F) denotes the functions from the discrete
support E onto the space of values of the imageF. Accordingly, I maps each
pixel x 2 E into a grey-level value t 2 F, I (x) = t. Note that F with the natural
order relation � is a complete lattice. It is important to remark that if the F is
a complete lattice, then Fun(E; F) is a complete lattice too [24]. Morphological
operators aim at extracting relevant structures of the image. This is achieved
by carrying out an inquest into the image through a set of known shape called
structuring element (SE). The two basic words in the mathematical morphology
language areerosion and dilation . They are based on the notion of in�mum and
supremum. For the case of 
at structuring element (SE), the 
at erosion and
dilation operators are de�ned as follow,

"SE(I ) (x) =
^

y2 SE(x )

I (y) and � SE(I ) (x) =
_

y2 ŜE(x )

I (y); x 2 E (2)

where SE(x) � E denote the spatial neighbourhood induced by the structuring
element SE centred at x, and ŜE is the transposed structuring element (i.e.,
re
ection w.r.t. the origin).

2.1 Types of adaptivity in mathematical morphology

The formulation contained in previous subsection is translation invariant in the
space and in the intensity, i.e., the same processing in considered for each pixelx



in the image I . Several ways have been analysed to de�ne local characteristics of
the image in order to locally design theSEat each point of the product space (x �
t) 2 E� F. There are di�erent ways to de�ne a hierarchy of approaches proposed
on adaptive morphology. We use the scheme introduced by [21]. According to the
adaptivity considered by the construction of the structuring element, we have
two main types:

1. Location-adaptive structuring elements (variability on E[2]): The structuring
element SE(x), depends on the locationx in the image. It does not depend
on the input image I (x). One of the earliest application that required the use
of variable sizeSEs is the tra�c control camera system [5]. This application
inspired [5] to consider the perspective e�ect in the morphological analysis.
Vehicles at the bottom of the image are closer and they appear larger than
those higher in the camera. Thus, theSEshould follow a law of perspective,
for instance, vary linearly with its vertical position in the image. Other ex-
ample is the term \locally adaptable" used in [10], for SEs as disk where the
radius depend on the position of the image.

2. Input-adaptive structuring elements (variability on F [2]): The shape of the
SE(x) at x depends on the local features of an imageI . We denote this
kind of structuring element by SEI (x). Examples of this type of adaptive
are morphological amoebas [16], intrinsic structuring elements [11], region
growing structuring element [20] and morphological bilateral �ltering [3]. An
example of this type of adaptivity is shown in Fig.1.

(a) Classical Structuring Elements (b) Adaptive Structuring Ele-
ments

Fig. 1. SEvs SEI for some pixels.

2.2 Flat Input-Adaptive morphology

In this subsection, we limit ourselves to the case of 
at input-adaptive structuring
elements. Let L = Fun( E; F) denote the complete lattice of grey-scale functions
with domain E, whose range is a complete latticeF of grey values. Consider the



mappings � : L ! L and " : L ! L de�ned by:

� SEI (I )(x) :=
_

y2 SEI (x )

I (y); and "SEI (I )(x) :=
^

y2 ŜEI (x )

I (y); x 2 E (3)

As noted by Roerdink [21], since the neighbourhoods depend on the inputI
the mappings in (3) are in general not a dilation and erosion, i.e., they do not
form an adjunction [14], hence products�" and "� are not guaranteed to satisfy
the algebraic properties of opening and closing. Additionally, in [21] is given an
essential conclusion: \one has to �x the adaptive neighbourhoodSEI (x) once
they have been derived from an initial input image I . The one can apply the
operations in (3) to any input image J, and also use combinations of them to
construct adaptive opening, closing, alternating sequentiality �lters, etc." Thus,
in order to have algebraic morphological operators, we need to de�ne a set of
adaptive neighbourhoods from a given imageI . That is the motivation for the
�rst de�nition

De�nition 1 A structuring elements system onI : E ! L is a family SEI =
f SEI (x)gx 2 E such that for all x; y 2 E,

1. x 2 SEI (x),
2. y 2 SEI (x) ) x 2 SEI (y).

The subsetSEI (x) is called the structuring element ofx on the imageI .

Note that the structuring element system includes the
at symmetric structuring
elements [23], intrinsic structuring elements [11], location-adaptive structuring
element [21], and spatially-variant morphology [6]. A fundamental concept in
mathematical morphology which plays a role of pseudo-inverse in mathemat-
ical morphology, is the adjunction [23]. The adjunction concept associated to
adaptive morphology is a misleading concept. See for instance [21] for a pleasant
description of this problem. The main advantage of De�nition 1 is that allows
to formulate the Theorem 1.

Theorem 1. If SEI is a structuring element system onI then � SEI (J1) � J2 ()
J1 � "SEI (J2), for all I ; J1; J2 2 L

Proof. Note that the structuring element system depends only onI . Thus, the
proof is straightforward from [21].

Corollary 1. 
 SEI (J) := � SEI ("SEI (J)) is an opening in the algebraic sense, i.e.

 SEI (J) � J and 
 SEI (J) = 
 SEI (
 SEI (J)) , for all I and J in L . Additionally, the
dual operator ' SEI (J) := "SEI (� SEI (J)) is a closing in the algebraic sense.

Particular cases of this algebraic opening/closing de�nition can be found in the
literature, for instance, Lerallut et al. in [16] proposed the computation of the
adaptive structuring element called amoebafrom a pilot image, which includes
always the central pixel (origin). Adaptive geodesic neighbourhoods in [13] and
bilateral 
at structuring element [3] uses respectively a threshold over geodesic



distances or convex combination of spatial distance and a pixel value distance
to induce a spatial adaptive structuring element.
Remark 1: Note that SEI is �xed. That important issue, illustrated in [21],
involves that if J = � SEI (I ), the operator "SEJ (J) is not an opening in the algebraic
sense. In our notation, that means that in general"SEJ (J) 6= 
 SEI (I ). In practice,
you cannot apply adaptive dilation followed by adaptive erosion to obtain an
adaptive opening in the algebraic sense.

3 Non-
at nonlocal morphology

In order to fully understand how and why nonlocal morphology works, we will
begin with a detailed description of nonlocal means and the theory which support
the approach. Nonlocal processing refers to the general methodology of designing
energies using nonlocal comparison of patches extracted in the image. Starting
from the initial paper by Baudes et al. [1], nonlocal energies have proved to
be e�cient for many imaging problems, including denoising [1], semi-supervised
classi�cation [12] and segmentation [7]. Recently, nonlocal schemes for image
processing have received a lot of attention [8]. Rather than considering only the
vector associated to one pixel to compute pixel similarities, patches around these
pixels are considered. These patches capture the dependencies of neighbouring
pixels and thus can distinguish textural patterns. Nonlocal means �lters have
been proposed in [8] mainly for denoising applications. The �ltering idea consists
in computing a weighted average of the input image in a neighbourhood of size
k:

NLM (I ; k)(x) =
X

y2 I

I (y)
gW I (x; y)

P
z2 I

gW I (x; z)
; x 2 E

=
X

y2 I

I (y)W I (x; y); x 2 E (4)

where the weight W I (x; y) is de�ned by computing the similarity between a
patch P centred around the pixel x and a patch around y 2 SEI ;k (x)

gW I (x; y) := gW I (P(x); P(y))) = exp
�

�
jjP (x) � P(y)jj2

� 2

�
; x 2 E (5)

Here, jjP jj is the Euclidean norm of the patchP of sizel � l as a vector inRl � l

and � is a smoothing parameter. Thus, pixels with similar neighbourhoods are
given larger weights compared to pixels whose neighbourhoods look di�erent.
The algorithm makes explicit use of the fact that repetitive patterns appear in
most of the natural images. The idea is illustrated in Fig. 2. For a review of the
evolution of nonlocal modelling in imaging we recommend [15]. The \natural"
morphological extension of the nonlocal means de�ning (4) is the version on the



(a) Original image (b) Equation (5) for a pixel centred at the
left-eye of the koala.

Fig. 2. Example of nonlocal-functional based on the grey-patch information. The centre
pixel is marked by a red-cross. Original image has 384� 512 pixels.

max-plus algebra3, which involves replacing the convolution (i.e.
P

y2 I ) by the
supremum or in�mum (i.e.,

W
y2 I or

V
y2 I ) and the kernel weights W I by their

component-wise logarithmWI = log( W I ), i.e., :

� SEI ;W I (I )(x) =
_

y2 SEI (x )

(I (y)+ WI (x; y)) ; and "SEI ;W I (I )(x) =
^

y2 SEI (x )

(I (y)�W I (x; y)) ;

(6)
for x 2 E. A similar expression to (6) was presented by Salembier in [22] with-
out including the logarithmic transformation on W I . To justify this logarithmic
connection between the standard algebra (+; � ) and (max; +) algebra underly-
ing morphological operators, the reader is referred to [18, 9, 4]. At this point, a
question arise, is the pair ("SEI ;W I (I ); � SEI ;W I (I )) an adjunction in the algebraic
sense?

De�nition 2 A morphological weight systemWI : E� E7! R+ on I is a weight
function such for all x; y 2 E,

1. WI (x; x ) = 0 8x 2 E,
2. WI (x; y) = WI (y; x) 8x; y 2 E,
3. �1 � W I (x; y) � 0 8x; y 2 E.

In fact, we note that all conditions in De�nition 2 are valid for the nonlocal
weights in (4) due to the facts that 0 � W I � 1 and W I is a 1-diagonal and
symmetric matrix.

Theorem 2. If SEI is a structuring element system andWI a weight system on
I then � SEI ;W I (J1) � J2 () J1 � "SEI ;W I (J2), for all I ; J1; J2 2 L

3 A max-plus algebra is a semiring over the union of real numbers and �1 , equipped
with maximum and addition as the two binary operations instead of + and � oper-
ators as in standard algebra.



Proof. Firstly, note that the structuring elements system depends only onI . The
proof is straightforward from [21], however it is included to make this article
globally self-contained, and then more comprehensible for the reader.

� SEI ;W I (J1) � J2 () � SEI ;W I (J1)(x) � J2(x); 8x 2 E by (6)

()
_

y2 SEI (x )

J1(y) + log( WI (x; y)) � J2(x); 8x 2 E by max and log �1 and 0.

() J1(y) + log( WI (x; y)) � J2(x); 8x 2 E; 8y 2 SEI ;k (x) by 2 in De�nition 2

() J1(y) � J2(x) � log(WI (x; y)) ; 8y 2 E; 8x 2 SEI ;k (y) by min and log

() J1(y) �
^

x 2 SEI (y )

J2(x) � log(WI (x; y)) ; 8y 2 E by 3 in De�nition 2

() J1(y) �
^

x 2 SEI (y )

J2(x) � log(WI (y; x)) ; 8y 2 E by (6)

() J1(y) � "SEI ;W I (I )(y); 8y 2 E

() J1 � "SEI ;W I (I ); 8y 2 E

(a) Local structuring element. (b) Sparse nonlocal structuring element.

Fig. 3. Local (SE(x)) vs nonlocal structuring element ( SEk; I (x)) for the some pixels.

Corollary 2. 
 SEI ;W I (J) := � SEI ;W I ("SEI ;W I (J)) is an opening in the algebraic
sense, i.e., 
 SEI (J) � J and 
 SEI ;W I (J) = 
 SEI ;W I (
 SEI ;W I (J)) , for all I and J in
L . Additionally, the dual operator, ' SEI ;W I (J) := "SEI ;W I (� SEI ;W I (J)) is a closing
in the algebraic sense.

De�nition 3 The matrix representation W of a morphological weight system
WI given an imageI with n pixels x1; x2; : : : ; xn 2 E is the square matrix of size
n � n de�ned by W = [ WI (x i ; x j )] = [log W I (x i ; x j )], 8i; j = 1 ; : : : ; n.

Remark 2: From De�nition 2, it is easy to see that W in De�nition 3 should be
symmetric and with diagonal equal to zero. Additionally, W is not forced to be
positive semi-de�nitive as in most of the linear kernel based �ltering [19]. How-
ever, any positive de�nitive kernel induce a weight system inE. In this section it
was shown how nonlocal morphology is a particle case of adaptive morphology
and a relevant conclusion was presented about this misleading term. However,



the implementation of this approach requires the computation of a max-plus
convolution with a full matrix W which in computationally intractable. We pro-
pose a solution to this bottleneck by modifying the neighbourhood connectivity
mapping to connect only a small number of neighbours. Thus, it is possible to
implement with almost linear complexity, as it is presented in the next section.

4 Sparse nonlocal morphology

In the original formulation of nonlocal morphology in [22], dilation and erosion
are analysed by incorporating only the information from the k-nearest neigh-
bours (kNNs) according to the patch distance in (5). We denote this asSEI ;k .
By simply plug-in SEI ;k in (6), we obtain:

� SEI ;k ;W I (I )(x) =
_

y2 SEI ;k (x )

(I (y) + ( WI (x; y))) ; x 2 E (7)

It is important to note that the proposal in [22] fails to identify the importance
issue of Properties 2 and 3 in De�nition 2, i.e., the symmetry of WI and loga-
rithmic relationship between WI and W I . Note that the kNN is not a re
exive
relation, i.e., given a set of vectorsX = f x1; x2; : : : ; xn g, if x1 is a kNN of x2 on
X does not imply that x2 is a k-nearest neighbours ofx1 on X . So, the structur-
ing element systemSEI ;k does not follow the Property 2 in the De�nition 1. To
have the symmetric property, a simple approach is to de�ne thex i as a k-NN
of x j based on the metricd if d(x i ; x j ) is among the k smallest elements of the
set f d(x i ; x j )jj = 1 ; : : : ; i � 1; i + 1 ; : : : ; ng or viceversa. A illustrative example
of sparse structuring element is show in Fig 3.Implementation. A large part
of the success of mathematical morphology in the imaging engineering commu-
nity is due to the algorithmic developments. Very e�cient algorithms have been
proposed for translation invariant morphological operators for both binary and
grey scale images. However, algorithms addressing the case of adaptiveSEI are
still very limited. Here, we proposed an e�cient implementation for the case of
sparse nonlocal morphology (SEI ) based on sparse matrices. Basically, we solve
the matrix product directly in the algebra (max ; +) taking advantage of the
sparsity of the structuring element system. So, we de�ne a square matrix of size
n � n denoted by _W SEI ;k or by abuse of notation _W = [ W (i; j )] if j 2 SEI ;k (i )
and 0 otherwise. Thus, an adaptive dilation (erosion) may be solved e�ciently
as it is presented in Algorithm 1. In sparse matrices only the non-zero entries
are stored. We denote asfindnonzero (W ) the function to obtain the non-zero
entries of a sparse matrixW . Each entry in the output represents an element
w i;j of the matrix and can be accessed by the two indicesi and j . Accordingly,
max:row(X ) denotes the vector of the maximum of each row ofX , and vec(X )
the vectorization of X , i.e., the linear transformation to convert the matrix into
a column vector.

Theorem 3. Every adaptive dilation(erosion) based on a sparse matrix_W can
be computed in timeO(nk log(k)) and spaceO(nk), where n is the number of
pixels of the image andk > 0.



Algorithm 1 Sparse Max-Plus Dilation

Require: I 2 Rn 1 � n 2 , and a sparse square matrix _W 2 Rn 1 n 2 � n 1 n 2 .
I = vec(I ) Vectorization of the original image.
[i ; j ; v ]= findnonzero ( _W ) Find nonzero elements in _W .
for k = 1 to jv j do

O(i (k); j (k)) = I (i (k)) + log( v (k)) Parenthesis operation in (7).
end for
O = max:row(O) Maximum operation in (7).
return O

Proof. To compute a dilation, we multiply n times the original image I as a
vector to each of the rows of the sparse matrix _W of sizen � n with k values
di�erent of zeros (O(kn)). A maximum operation should computed in rows, i.e.,
O(k log(k)n). Thus, the complexity of Algorithm 1 is O(k log(k)n). However,
note that usually k � n then the computation time tends to be linear O(n).

Connections to graph theory. To warm up, let us start by recalling some
graph-theoretic de�nitions.

{ A graph G is pair of setsG = ( V; E), where the elements ofE, called edges,
are unordered pairs of elements fromV, called vertices.

{ A sequencex1; x2; : : : ; xk of distinct vertices of a graph G = ( V; E) is called
a path betweenx1 and xk if f x i ; x i +1 g 2 E whenever 0� i < k . The length
of the path is k, which is the number of edges in the path.

{ A graph G = ( V; E) is said to be connected if there is a path between every
pair of vertices in V.

{ The adjacency matrix A G of a graph G with n vertices is a n � n matrix
A G = ( aij ) in which the entry aij = 1 if there is an edge from the vertex i
to vertex j and is 0 if there is no edge from vertexi to vertex j .

The follows de�nitions are valid for connected graphs.

{ The distance d(x; y) between a pair of verticesx; y 2 V is the length of the
shortest path between these vertices.

{ The eccentricity e(x) of a vertex x is the maximum distance from x to any
other vertex, i.e. e(x) = max y2V d(x; y).

{ The maximum eccentricity among all vertices of a graphG = ( V; E) is called
the diameter, i.e. diam(G) = max x 2V e(x)

{ Given a set of data points X = f x1; x2; : : : ; xn g with x i 2 Rd. Gk (X ) =
(V; E) is a directed graph, whereV = X , and the vertex hx i ; x j i 2 E if and
only if d(x i ; x j ) is among the k smallest elements of the setf d(x i ; x j )jj =
1; : : : ; i � 1; i + 1 ; : : : ; ng or viceversa, whered is a metric.

For a disconnected graphG, the diam(G) is de�ned to be the diameter of the
largest connected component inG. From a digital image I , we de�ne G = ( V; E)
as an undirected graph with vertex setV matching the image pixels and edge
set E consisting of unordered pairs of vertices indicating the adjacency between



the image pixels according to the adaptive structuring elementSEI (or SEI ;k for
sparse nonlocal morphology). As the graph only depend onI and SEI , we use
the notation G(SEI ) (or G(SEI ;k )). Some links between the nonlocal formulation
and classical graph theory are easily perceived.

{ G(SEI ;k ) is a Gk (P I ), by the metric (5), where P I denotes the patch infor-
mation of the image I .

{ The element-wise product betweenA G(SEI ;k ) and W I is exactly the sparse
matrix _W SEI ;k used in Algorithm 1.

Finally, we enunciate a less intuitive link between morphological operators and
graph properties (proof is not included because of space constrains).

Theorem 4. � i +1
SEI

(I ) = � i
SEI

(I ) for i � diam(G(SEI )) .

(a) I (b) � 1
SEI ;k

(I ) (c) � 2
SEI ;k

(I ) (d) � 5
SEI ;k

(I )

(e) " 1
SEI ;k

(I ) (f) " 2
SEI ;k

(I ) (g) " 5
SEI ;k

(I ) (h) CC of G(SEI ;k )

Fig. 4. Half-chessboard pattern example is a 48� 96 binary image where each square has
144 pixels. The original image (a) is corrupted by impulse noise ( � = :3). Flat nonlocal
morphology operators, where patches are square 3� 3, and k = 5 are illustrated in
(b)-(g). CC in (h) denotes connected components.

5 Experiments and Conclusions

To illustrate the e�ect of nonlocal morphological operators, we �rstly analyse
the simple geometrical case of Fig. 4. Nonlocal morphological operators perform
quite well due to the connected components ofG(SEI ;k ), displayed in Fig.4(h),
are coherent with the geometric structures of the original image. In the sec-
ond example, given in Fig. 5, parameters are set to have an unique connected
component. We can see that the simpli�cation by nonlocal morphology a�ects
only 
at zones of the image, in comparison with classical morphology. However,
it is important to remark that the important geometrical interpretation of the
classical morphological operators is missing in the nonlocal case. Finally, visual
comparison between local and nonlocal dilations and erosions can be performed
in a complex image depicted in Fig. 6. To summarise, we studied a class of
morphological �lters which operate based on patch distance information. We
also analysed in detail the requirements to have genuine adaptive morphological



transformations and, as conclusion, the symmetry and logarithmic connection
turns out to be the most relevant properties. Finally, we provided a fast imple-
mentation in the case of sparse nonlocal morphology which can be used in any
adaptive morphology. Future work includes the comparison of our approach with
nonlocal total ordering by manifold learning introduced by [17].

(a) I (b) � 3
SEI ;k

(I ) (c) 
 2
SEI ;k

(I ) (d) 
 2
SE(I )

(e) " 3
SEI ;k

(I ) (f) ' 2
SEI ;k

(I ) (g) ' 2
SE(I )

Fig. 5. House pattern example is a 110� 130 image. Patches are squares of 5� 5,
� = 200 and k = 5. The k-graph contains only one connected component.
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