N

N

Fast implementation of large erosions and dilations in

Mamba
Serge Beucher

» To cite this version:

‘ Serge Beucher. Fast implementation of large erosions and dilations in Mamba. 2010. hal-00835025

HAL Id: hal-00835025
https://minesparis-psl.hal.science /hal-00835025

Preprint submitted on 25 Jun 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://minesparis-psl.hal.science/hal-00835025
https://hal.archives-ouvertes.fr

Fast implementation of large erosions and dilationsin Mamba

Serge Beucher
CMM/ARMINES

(with contributions byNicolas Beucher, http://mamba-image.org)
This document is part of the Mamba algorithmic documentation

1. Introduction

Large structuring elements are used in many mogghedl transformations. They are needed when
computing size distributions, in filtering operatdand especially in alternate sequential filtei®),
regularised gradients and large top-hat transfoforsresidual operators (skeletons by openings,
critical balls, ultimate openings and so on). Morpwn some applications, images are large and
even very large. Remind that Mamba is able to m®amages containing up to 16%ixels, value
which corresponds for instance to a 4096x4096 pikekhge. So, it is not unusual, when dealing
with these images, to need very large erosionstioliils, openings or closings. Performing an
ultimate opening on such an image may require teeotispening sizes up to 2000!

Most of the time, large size operators use iteratiohan elementary one. These implementations
are mainly hardware implementations based on GPtdJlelprocessors, pipe-line processors [3],
[4]. These implementations are often very specifiey need a big amount of hardware ressources
(memory, calculation power). Moreover, they are very flexible. For example, they do not allow

to use easily more complex structuring elementscasgons on the square grid or dodecagons on
the hexagonal one. But it is a matter of fact thase shapes become compulsory when large sizes
are at stake. Square shapes in particular arectrse (and ugly!) to be used efficiently.

Software implementations are even fewer. Their ndaawback is that they most often need, to be
effective, a specific representation of the imagéd processed (for instance, a specific coding of
the intercepts for a binary image). These appraaehe very clumsy, and they work only in very
simple contexts.

Moreover, all these implementations are, most efttlme, unable or at least inefficient to cope with
edge effects which inevitably occur. Some hardvwagmdementations define a thick edge around the
image window. This, indeed, avoids edge biaseqibatls a great amount of memory and multiply
by a factor 4 to 8 the computation time. Other ienpéntations do not take care of these errors and
accept them, arguing that they are not so imparténis way of doing is obviously the worst
solution and should not be agreed.

2. General description

The solution proposed in this document is based tast decomposition of operations by doublets
of points and on the use of these operations t@rgém various structuring elements: segments,
hexagons, squares, dodecagons and octogons. Weats@ttention to propose solutions where
edge effects have been addressed and also whetedlrdefinition modes (euclidean or geodesic)
for these operators are possible.

The efficiency of the implementation described bettepends on the availability of fast operators
for image shifting and for dilations and erosiogsalbdoublet of points. Fast operator means that the

computation time is supposed to be independanhefsize of the operation. For instance, the
computation time for an image shifting of size 8 be the same (or approximately the same) as
for a shifting of size 300...

Fortunateley, these operators are available in Marihey are nameshift, supFarNeighbor and
infFarNeighbor. See the Mamba Reference Manual [1] for a moraildét description of these
transforms. These operators are written in C arappad into Mamba. The only (slight) restriction
in their use is that the shift or doublets of psimlirections must be defined among the main
directions of the grid in use.

2.1. Operations with lar ge segments

The classical way of performing a dilation by areegt of size n in a given direction consists in
iterating n size-1 dilations. So, if your segmentarge, the transformation will take a rather long
time. However, it is very easy to get the sameltdaster by using dilations by doublets of points.
This algorithm seems to have been used for thetiiing in [5] (although we are not sure of it, more
information about this is welcome...) and in adwaare architecture implementation.

Let us illustrate this with an example. Supposé tha want to dilate a function or a set by an
horizontal segment of size 21. Instead of apply@figsuccessive size 1 dilations, let us perform the
following sequence of dilations by a doublet ofrgsi a dilation of size 6, followed on the previous
result by a dilation of size 8, followed by a ditett of size 4, then 2 and finally 1. As illustratied
Figure 1, we obtain finally a dilation by a segmehsize 21 but with only 5 steps instead of 21. We
have potentially multiply by 4 the computation spee

Figure 1. (a) successive dilations of an initial point (top line) by doublets of points of respective
Sizes 6, 8, 4, 2 and 1. In red, points added at each step. (b) Verification that no edge effect may
occur.

How to decompose the initial size n into a suitad#guence as shown before? In fact, when n is
equal to 2—1 (i being any positive integer value), the decompmsiis straigthforward: the
successive powers of 2, 2vith 0 < k < i are used. We can easily see thegé dilations produce at
the end a dilation by a segment of size n, provithed we apply these successive dilations in
decreasing order (largest one first, size 1 diladnding necessarily the sequence). When thesize i
not equal to but greater thah12 the decomposition is not complicated: we digrsubstracting 21
from n, 2-1 being the largest value lower than n. The valme-2+1) corresponds to the size of
the first dilation by a doublet of points. Notetthéen—2'+1) is always lower than or equal t6 2
Then, we decompose the numbéd Z1s explained above. If the order of operatiensespected
(and especially if the first one is the dilation sife (n—2'+1)), the final transformation is a
dilation by a segment of size n. If you start franset made of a single point, at the end of these

successive operations, you will obtain a segmergiz# n without holes or missing points. Note
also that no edge effects appear: if the initidhpe at a distance less then n from the edge, the
final result is the intersection of the segmermginé n with the field of analysis (Figure 1b).

Compared to the classical implementation, thisisrdramatically faster especially when the size n
of the linear structuring element is large. If ~‘Zn<2' , the speed increase is equal to n/i, that is
n / int(log(n)). In fact, this speed gain is lower becausestipE-arNeighbor operation in Mamba is

a little bit slower tharsupNeighbor, dilation by an elementary segment. However, éogé sizes,
this gain is impressive: a dilation by a size 38@msent is about 30 times faster!

Erosions by large segments can be performed ins#me way, thanks to the availability of
inFarNeighbor in Mamba. Note also that these transformations lsanequally performed in
euclidean or geodesic modes (the edge configuratiarbe defined in the operators arguments list).

These two operators are implementedargelLinearErode and largelinearDilate in the Mamba
erodilLarge.py module (see annex).

2.2. Operations with large squares

Performing rapidly erosions and dilations with Ergguares is straightforward. Indeed, a square
belongs to the Steiner class of polygons, which naethat erosions and dilations with this
structuring element can be decomposed into suseesgierations with segments. Each segment
corresponds to a linear part of its boundary (oranorecisely its half-boundary). Therefore, a
square dilation can be obtained by four succeglagons with segments in the directionsiR, 1t

and 372 (Figure 2).

E}—-GU:B

Figure 2: Successive dilations of a point by segments in directions 0, 772, 7rand 3772 to obtain a
sguare (Steiner polygon).

No edge effect is likely to happen for pixels clés¢he edge because points sent outside the image
window by one segment dilation (these points ast) Ibave no effect on the following dilations
which do not need to reinsert them inside the wiwndo

A similar implementation is used for erosions. T&esvo operators are namktigeSquareErode
andlargeSquareDilate in erodilLarge.py (see annex

2.3. Operations with lar ge hexagons

Hexagons belong also to the Steiner class. An lenaglilation can be performed (theoretically)
by three successive linear segmentations in tleetitans 07t1/3 and 2t/3.

Unfortunately, in practice, this approach doeswotk properly. The reason? Edge effects... These
edge effects have already been encountered whenindethe basic hexagonal dilation (size 1
hexagon), see [2]. It is due to the fact that,dbels near the edge of the image, a dilation in a
given direction may propagate a point outside thage window. However, if this dilation is not the
last one, the next dilation using another directshould reintroduce inside the image a point
resulting of the dilation of the previous pixelaths not possible because this previous pixel is
unfortunately lost (see Figure 3). In order to copih this problem, the solution, for the elemewtar
hexagon, was to perform a supremum of dilationsdgments in the six directions of the hexagonal
grid. However, this solution is no longer possibligh size n (n > 1) hexagons because it would
correspond to dilations by « snowflakes » or asksriThus, we are faced to a dilemma: on the one
hand, the Steiner decomposition is compulsory &sthe only way to generate dilations by large
hexagons with segments and, on the other hand haw khat this approach leads to unacceptable
edge effects.

(a) (b) (€)
Figure 3: (a) Dilation of a point near the edge by three successive dilations by segments in
directions 1, 3 and 5. (b) Same operation with segments in successive directions 4, 6 and 2. (c) The
union of these two results do not prevent edge effects when the initial point is in the upper left
corner.

To solve this dilemma, a mixed solution is propobsede, based on suprema of partial dilations
obtained by composition of dilations by segmentgdeked, when performing an hexagonal dilation
by concatenating linear dilations, different ordairs possible: we can use direction 1 first, fokbow

by direction 3 and direction 5. Or we can use agmothder. Six different orders are available, each
one leading to the same result, except if the gixdle dilated is near an edge. In this case, some
orders may produce incorrect results if edge effappear as illustrated at Figure 3a above.

Therefore, if we perform two dilations, using difat directions orders, we may expect that the
supremum of these two dilations will produce a restilere edge effects have been removed. For
instance, if we use successive directions 4, 62aimdthe above example, the union of both results
produces the awaited hexagonal dilation. In faot, $econd dilation alone gives a right result,

however using both dilations produces a satisfgctesult, the point being near the left or right

edges (Figure 3b).

However, we are not sure that this combination gille a correct result whatever the position of
the pixel in the image. In fact, in this examptdasinot the case. If the pixel to be dilated iamibe
top left corner of the image, the result is wroRm(re 3c).

In fact, this approach does not work properly. Vékat the combinations which are used, it is
always possible to exhibit counter-examples of Igixehich are placed in such a position that edge
effects occur.

Figure 4: Result of two successive dilations in directions 1 then 3 (left) and in two directions 3
then 1 (right). The first one produces an important edge effect.

Therefore, to be sure to obtain a correct resulafiopixels in the image, it is necessary, notydol
perform the supremum of partial dilations but @s@ombine the directions of the linear dilations
in such a way that possible edge effects occuriit some combinations of dilations will be
compensated by the others. To insure this, thewolg combination has been used (Figure 4): we
perform a dilation by a segment in direction 1 deled by a dilation in direction 3. Then, we
perform on the initial image a dilation by a segman direction 3 followed by a dilation in
direction 1. The supremum of these two dilationgasnputed. Then, the linear dilation of this
supremum in direction 5 is performed. Using twatidns in directions 1 and 3 by simply inverting
their order allows to remove possible edge effedtgech could occur when either direction 1 or
direction 3 dilation goes over the edge.

Figure 5: First step of the algorithm (left), use of directions 1, 3 and 5. Second step (middle), use
of directions 4, 6 and 2. Note that edge effects do not occur because directions 4 and 6 have been
used twice. Supremum of the two previous results (right).

It may happen that both directions produce edgectsff(see Figure 5 and examples above). This is
why the entire procedure is applied again on tiit&inmage using directions 6, 4 and 2 this time.
Finally, the supremum of these two operations mmated to obtain the final result without edge

effects.

Nevertheless, this procedure assumes that, f@aat bne direction of linear dilation, the restlt o
this dilation is always contained inside the theg®a window (Figure 6). If it is not the case, this
procedure cannot avoid edge effects leading toagvresult. This configuration occurs when the
hexagon size n is larger then half the window dinwerss (width, height). The only solution to

avoid this flaw consists in splitting the operatiato successive dilations of size i in the follogi

way:

* Perform a dilation of size i = min(width, heightjfzr > i, of size n if not
« Computen=(n-i)
* Repeat until N<0

Figure 6: When the size of the structuring element is higher than half the size of the window (here,
sizeis 12 whereas window height is 11), edge effects are unavoidable.

It may seem odd to consider structuring elementgefathan the size of the image. However, this
situation may happen, when dealing with residuaigforms for instance.

The same procedure applies, mutatis mutandisrde leexagonal erosions.

Both operations are implemented in thedilLarge.py module. They are named respectively
largeHexagonal Erode and largeHexagonalDilate. They work on binary or greytone images. The
edge of the image can be defined in the operatiansments list.

2.4. Operations with large octogons

Large octogons are more interesting than squareshensquare grid because they are more
isotropic. We already know that an octogonal openafdilation or erosion) can be achieved by
concatenating a square one followed (or precedgdarboperation with a conjugate square or
diamond [2]. In order to obtain an isotropic polygaf size n, the respective sizes of the square and
diamond operations are given by:

V2

n,= —Xn forth i
"= 1v2) or the square size

n
n,=n—n,= i i
2 1 1+ JE) for the diamond size

that is approximately:
n,~0.4142:n
n,=n—n,

If the size of images is less than 10000 pixelseiight or width, this approximation is sufficient.

We already know how to perform rapidly transforroasi with large squares. Regarding conjugate
squares (or diamonds), these structuring elemeastsalao Steiner polygons. However, although
they could be obtained by linear dilations in dil@es multiples ofiv4, this way of doing arises two
problems. The first problem comes from edge effedisch have already been described with
hexagons. They have the same origin. The secordeonas due to the fact that the linear dilations
used to generate conjugate squares are defineldeoconjugate grid. This leads to dilations with
holes as some points are never concerned (Figure 7)

........ G........
....... .E).E}.......
...... .@.G.E}......
..... G.O.G.G.....
...E)..E).G.E}.E}..
.@.9.9.@..@..@.
oéaéeéaéeéeée
..@.@.E}.E}.E}..
..... @.O.G.G.....
...... Oéeée......
........ E}........

Figure 7: Dilations by segments defined on the conjugate grid. The result is a diamond also
defined on the conjugate grid (hollow diamond).

So, to avoid edge effects, an approach based orermapof dilations by doublets of points is
applied to obtain dilations by diamonds. To getz# 1 diamond, the size is decomposed in the
same way as it was done for linear structuring el@ms For each value i of the decomposition, a
dilation by a "cross" structuring element (Figuresgperformed.

This structuring element is obtained by the uniorditdtions by doublets of points in the four
horizontal and vertical directions. Dilations arencatenated for all the values of the size
decomposition (Figure 8b).

The structuring element generated by this procetur®t a true conjugate square as some holes
may appear inside it as shown at Figure 8. Moredkese holes may sometimes be larger than one
pixel wide, especially near the edges. Therefdns, pfrocedure cannot be used to obtain unbiased
dilations or erosions by conjugate squares.

630

..... G} @%@8@@@
........... . E}OG@@ -
........... GGGGGGGGG
........... ® - G‘G‘O -
© o) @ eea%eeeee@e%eee
........... O - NoFNoRRok ()
........... 00000000 -
........... 00000 -
- 0900090 : - -

....... ololo I

........ (O

Figure 8: "Cross" structuring element of size 4 (left) and result of successive dilations of a point
by this structuring element (sizes 4, 2 and 1) producing a spar se conjugate square of size 7 (right).

But there is an interesting characteristic of tinsformation which allows to use it to produce
octogonal operations: there is no point missinghenboundary of the structuring element. This can
be proved easily when the size n of the structuglgment is equal to' 21. This size can be

decomposed into the successive decreasing values:

2t 22 ...2.1

....... OO+« - - -
0-0-0

Figure 9: The green pixel on the diamond boundary at coordinates (5, 2) isgenerated by asize 1
dilation of the red pixel, itself obtained by a size 2 dilation of the blue one. The blue pixel has been
generated by a size4 dilation of the initial yellow center point. These points are always
propagated inside the image window (refer to the possible position of an edge indicated by an

horizontal line in thefigure).

Each point on the boundary is then generated bgitagon by a size 1 "cross" structuring element.
The size 1 cross center point is itself generated 8ilation by a size 2 cross and so on (see Eigur

9). It is then possible to define a path of horiabor vertical dilations, all of them inside thieage
window, from each boundary point towards the ihitentral point.

More precisely, if the initial central point is abordinates (0, 0) and the boundary point at
coordinates (x, y) with x+y=n=X,"2¢ | it is always possible whatever x and y to write:

— k _ k i
X=2,2" and Y= 2" with 1,#I, and 1,U1,=(0i~1]

When n is not equal to but larger thdn12 we can perform a first dilation of size=nn-2+ 1
followed by the decomposition of the value-2 described above. But a,<2' —1 | there is
always an overlap of the boundaries produced bysthe 2-1 dilations of the cross of siza n
(Figure 10).

Figure 10: Boundary overlapping: the boundaries of the size 7 diamonds generated by the red and
blue pixels overlap, which insures that no boundary point of the final size 10 diamond is missing.

For any size of the dilation, the boundary of thentbnd structuring element is complete. So,
although it is not possible to obtain a true coajegsquare by these means, it is sufficient to get
dilations by octogons. Indeed, we saw that theae®ge sizes nfor the square and, rfor the
conjugate square to get an octogonal transformaficize n are given by:
V2 n
=-XNn and N,=N—nN;=
(1+2) 2 Y (1+4/2)

n,=

So, if we start from an initial point and if we fm first a dilation by a "sparse" diamond of size
n, as described above, we generate boundary poiatshakimum distance; firom this center point
(indeed, we generate many more points...). Nowadh of these points together with the original
center point are dilated by a square of sizeatl these squares cover the interior of the jnevi
hollow conjugate square becausg=n, , leading at the end to the generation of an octagfo
size n (Figure 11).

This implementation, both for dilations and erosidmas been realised largeOctogonal Dilate and
largeOctogonal Erode operators.

Figure 11: Sze 10 octogon obtained by a size 6 sparse conjugate square dilation followed by a
size 4 square dilation. We see that the dilations of the center point and of the boundaries of the
conjugate square are sufficient to get an octogon without holes.

We may wonder why this approach has not been ugbdhexagonal structuring elements (that is
performing iterations of dilations by a structurielgment made of the summits and the center of an
hexagon). We let the reader verify that this apginaa not very convenient as it produces important
edge effects.

2.5. Operations with lar ge dodecagons

We saw previously that performing fast operationth warge hexagons was rather tricky if edge
effects must be avoided.These edge effects arelyrdule to the use of directions non parallel to
the edges. They do not appear with squares becals@orizontal and vertical directions are used
for the dilations or erosions and because no catsant is needed to generate inside ones (each
point can be generated by linear dilation from hapotnside point). We saw also that these dilations
by horizontal and vertical doublets of points alltmbuild hollow conjugate squares which can be
used for octogonal operations.

Dodecagonal dilations and erosions being perforimgeadoncatenating hexagonal operations and
operations by conjugate hexagons, let us descobefaister operations with these latter structuring
elements can be achieved.

We explained previously how complex operations \iigixagons can be to avoid edge effects. We
are faced to the same difficulties with conjugat®dgons. Therefore, the same approach as the one
used for conjugate squares has been implementesbfifugate hexagons. This approach generates
also sparse or hollow conjugate hexagons. Howdkiese structuring elements are sufficient to
perform unbiased dodecagonal erosions and dilations

Let us describe the algorithm for dilations (pemiorg erosions is straightforward). The first idea

10

consists in using successive dilations by the fahowstructuring element made of the center and
the summits of a conjugate hexagon of size i (HdLR):

@ -
. .B B..
" ...B... "
. .B B. .
" ...B..

Figure 12: Initial structuring element used to compute sparse conjugate hexagons (left). This
structuring element is obtained by combining shifts (in green) and supFarNeighbor operators (in
red) on the hexagonal grid with supFarNeighbor transforms (in blue) on the square grid. Note that
the size of this structuring element is 2).

Each size i is obtained by the size decompositlomady used above. This structuring element is
built by a combination of shifts and of dilationg Boublets of points as illustrated at Figure 12.
However, edge effects are likely to happen: indioms 1 or 4 first, where the shift operation may
push a point outside the image window if the ceptant is close to the vertical edges. To avoid
this bias, one could perform the shift operationcéy in the right and left directions, before

computing the corresponding dilation by a douligwever, this is rather complex and a simple
trick allows to cope with this problem. The tric&rsists in performing a dilation by a doublet of
points in the vertical directions 1 or 5 on theagugrid!

Edge effects may also appear in other directionBussrated at Figure 13b. In this case, they come
from the proximity of the center point to the harital edges. If we consider two successive
dilations, the fact that a point has been pushedidrl the image window in the first dilation
prevents the generation of a necessary point irfdlh@wing operation (Figure 13c). In order to
eliminate this problem, the previous structuringneént can be amended by adding two points
which correspond to the horizontal summits of tlexdgon inscribed in the conjugate hexagon
(Figure 13d). So, this point will contribute to tgeneration of the point which was missing in the
previous implementation (Figure 13e). These twmigoare added by a dilation by doublets of
points in directions 3 and 5 (hexagonal grid). Ifsithe size of the conjugate hexagon (size
expressed in number of steps to get it from thenetgary conjugate hexagon), the size j of the
inscribed hexagon is given by j = 3 i/ 2. notettlifa is an odd value, j is given by j=int(3i }.2n
this case, the added point is always inside th@ugaie hexagon.

This procedure builds a hollow conjugate hexagahaut edge effects thanks to the horizontal and
vertical dilations by doublets. Moreover, as foe ttonjugate square, no point is missing on the
boundary (the proof is similar to the one used withjugate squares). Finally, the respective sizes
n; and nneeded for the dilations by an hexagon and a catgugexagon to get a size n dodecagon
are given by:

n,=v3(2—3)n=~0.4642n
n,=(n—n,)/2

11

Now, to cover entirely the conjugate hexagon bwgtaib its summits and its center by an hexagon
in order to fill the holes which remain in it, tineinimal size n' of the hexagonal dilation must be
n'=n. The actual size of the hexagonal dilation isl:\/§n2 . Therefore, n1 > n2 which insures

the covering and the generation of an unbiasedadapba of size n (Figure 13f).

..... @« « = = -
e e e @ e @ m e e e e e e e e e
- T T - ® - - ...
-®--@--0--0- Y I
P90 -0 - - TR L
-e--e--@--@,-

S e @ @@ - - -9 -®--®--® -
@+ @@ -0 - - -9®- -9 -®- -
-e-@-e-@-e-e-e- ®- -®--9®--®-
- - -0 -0 - -
----e--e----

----- 9-----

@) (b)

L T . ©
&ﬁ—ﬂ.—.
(©) (d)
........... .
AN BN
- - ® -® - -® - -
-® - -® - -® - -® -
- @ @ @ -
®- -®- -®--@® -
- - ®- -®- -® - -
-® - -® - -® - -® -
©) ()

Figure 13: (a) Concatenation of dilations by the structuring element described above (figure 12).
(b) Edge effects, 2 points are missing. (¢) Missed points should have been generated by points
which fell outside the image window at the previous step. (d) Modified structuring element, 2
horizontal points are added. (€) Edge effects have been corrected: the previoudy missing points
are generated by the two added points (red points near the edge). (f) Dodecagons obtained by an
hexagonal dilation of these spar se conjugate hexagons.

12

The computation of erosions and dilations by ladgeecagons is realised anodilLarge.py by
largeDodecagonal Erode andlargeDodecagonal Dilate.

3. Performances

The performances of these operators can be coaestiymated by comparing the number of
elementary operations needed to achieve the tnanafmn with the classical approach and with
these new implementations.

The transformations with linear structuring elensenéed the same number of elementary image
operators per loop. As this number of loops is loimehe new algorithm than in the classical one,
the increase of the computation speed is noticdatae size 2 transform (in fact, it is not exactly
the case as the computation timesggFar Neighbor andinfFarNeighbor operators is higher than it

Is with supNeighbor andinfNeighbor transforms).

Large square operations are always faster thasictdnes because the latter ones do not use the
Steiner decomposition of the square contrary toldhge ones, so that the number of elementary
operations in the first implementation is twice thenber of such operators in the second one.

If we compare the complexities of the hexagonabksital transformations and of the large

hexagonal ones, we can assume that the numbeemiertary operations to achieve a classical
operation of size n is approximately equal to (7 1). The large hexagonal operators are more
complex and need a large number of elementary terper loop. However, this number of loops

is given by int(log2(n)+1) when the size of trangfiation is n. The number of elementary operators
is therefore equal to 10 int(lg@) + 1) + 14.

The following table indicates the approximate numifeoperators for hexagonal transforms in the
range of sizes [0, 10] and for a size equal to Y@@€.see that, from size 7, the computation speed
for the new implementation overtakes the classioal

number of number of number of number of number of
n loops operations operations operations operations
(large SE) (linear ES) | (large lin. SE)| (hexagon) |(large hexagon)
1 1 2 2 8 24
2 2 3 3 15 34
3 2 4 3 22 34
4 3 5 4 29 44
5 3 6 4 36 44
6 3 7 4 43 44
7 3 8 4 50 44
8 4 9 5 57 54
9 4 10 5 64 54
10 4 11 5 71 54
100 7 101 8 701 84

13

Binary erosion speed (large vs standard)

— erode
— largeErode

Time (ms)

0 20 40 60 80 100
Erosion size

Greyscale erosion speed (large vs standard)
18 : : : :

— erode
16 — largeErode |

Time (ms)

0 20 40 60 80 100
Erosion size

Figure 14: Respective computation times for classical hexagonal erosions (in blue) and for large
hexagonal ones (in red). The top chart compares binary operations and the bottom one, 8-bits
erosions. Times are given in milliseconds. The image size is 768x576 pixels. These tests have been
made with a Core 2 Duo 8400 Intel processor, 3 GHz clock, 4 Go RAM memory running on Linux
Fedora 13, 64 bits, SSE2 instructions set enabled.

Finally, the curves above (Figure 14) illustrate #peed comparisons between the large hexagonal
erosion and the classical hexagonal erosion. Weasgramatic enhancement of the performances
obtained by this implementation so that, for siaeyér than 20, the computation time is almost

14

independant of the size.

4. Conclusions

We have shown that, from a simple idea (splittinogear transformation into successive operations
by doublets of points), a correct implementatioredge an undoubted effort to be efficient and
unbiased. But the gain in speed is worth this efféhis complexity explains surely why this
approach has been seldom used especially for heedmglementations. It is a matter of fact that a
transformation letting edge effects appear is noeptable.

The implementation which has been achieved in tlaambh library could still be enhanced by
coding some operators directly in C instead of BythHowever, the present realisation is a
compromise between the ease of use and the nedaigenace to better performances.

5. Acknowledgements

The author wishes to thank Nicolas Beucher foikind and benevolent help in the achievement of
this implementation. Nicolas wrote in particular ti@ and Python codes for thehift,
supFarNeighbor and infFarNeighbor operators. He also debugged my ackward Pythomtscri
tested them and evaluated the performances ahtpiementation.

6. References
[1] Beucher, Nicolas (2010): Mamba Image Librarytey Reference - http://mamba-image.org.

[2] Beucher, Serge (2010): Algorithmic descriptioherosions and dilations in Mamba - To be
published by http://mamba-image.org.

[3] Clienti, Christophe (2009): Architectures flde données dédiées au traitement d'images par
Morphologie Mathématique - Doctorat Morphologie h#&hatique, Centre de Morphologie
Mathématique, Mines ParisTech.

[4] Brambor, Jaromir (2006): Algorithmes de la ptwslogie mathématique pour les architectures
orientées flux - Doctorat Morphologie MathématiqgGentre de Morphologie Mathématique, Mines
ParisTech..

[5] Sternberg, Stanley (1982): Computer ArchiteesuBpecialized for Mathematical Morphology -

Workshop on Algorithmically Specialized Computerg@mizations, Purdue Univ., West Lafayette,

IN, USA..

(Publication date: October 26, 2010)

@00

This document is copyrighted under the Creative Commons " Attribution Non-Commercial No
Derivatives' license. For terms of use, see http://creativecommons.org/about/licenses/.

15

Annex:
Mamba erodilL ar ge.py module script

This module provides a set of functions performangsions and

dilations with large structuring elements. They lawmdt with special shift

operators written in C, together with special 'erfReighbor' and 'supFarNeighbor’
functions.

Contributor: Serge BEUCHER, August 1, 2010

import mamba
import mambaComposeas mC

def _sizeSplit(size):
This internal function splits the size of thrusturing element into a list of
successive and decreasing sizes (except th@fie). Successive erosions
or dilations by double points produce an enosiodilation by a segment
of length 'size'.

sizeList=[]

incr=1

while size>incr:
sizeList.append(incr)
size=size-incr
incr=2*incr

sizeList.append(size)

sizeList.reverse()

return sizelist

Elementary operators for large structuring eleisien
def largeLinearErode(imin, imOut, dir, size, grid=maaiDEFAULT_GRID,
edge=mamba.FILLED):
Erosion by a large segment in direction dia ireduced number of iterations.
Uses the erosions by doublets of points (sugbts be faster, thanks to
an enhanced shift operator).

mamba.copy(imin, imOut)
for iin _sizeSplit(size):
mamba.infFarNeighbor(imOut, imOut, dir, idggrid, edge=edge)

def largeLinearDilate(imIn, imOut, dir, size, grid=mbenDEFAULT _GRID,
edge=mamba.EMPTY):

Dilation by a large segment in direction diaimeduced number of iterations.
Uses the dilations by doublets of points (sggpicto be faster, thanks to

16

an enhanced shift operator).

mamba.copy(imin, imOut)
for iin _sizeSplit(size):
mamba.supFarNeighbor(imOut, imOut, dirrigdggrid, edge=edge)

Large hexagons

def largeHexagonalErode(imin, imOut, size, edge=maRb&ED):
Erosion by large hexagons using erosions lgelaegments and the Steiner
decomposition property of the hexagon.
Edge effects are corrected by an erosion waihsposed decompositions
followed by inf operations (see documentationféirther details).

This operator is quite complex to avoid eddeat$.

provl = mamba.imageMb(imin)

prov2 = mamba.imageMb(imIn)

sizemax = min(imin.getSize())/2

if size larger than sizemax, the operationtrbasterated to prevent edge effects.

n = size

mamba.copy(imin, imOut)

whilen > 0:
S = min(n, sizemax)
largeLinearErode(imOut, provl, 6, s, gricsmba.HEXAGONAL, edge=edge)
largeLinearErode(provl, provl, 4, s, gridenba. HEXAGONAL, edge=edge)
largeLinearErode(imOut, prov2, 4, s, gricsmba.HEXAGONAL, edge=edge)
largeLinearErode(prov2, prov2, 6, s, gridenba. HEXAGONAL, edge=edge)
mamba.logic(provl, prov2, provl, "inf")
largeLinearErode(provl, prov2, 2, s, gridenba. HEXAGONAL, edge=edge)
largeLinearErode(imOut, provl, 1, s, gricsmba.HEXAGONAL, edge=edge)
largeLinearErode(provl, provl, 3, s, gridenba. HEXAGONAL, edge=edge)
largeLinearErode(imOut, imOut, 3, s, gricemba.HEXAGONAL, edge=edge)
largeLinearErode(imOut, imOut, 1, s, gridcemba.HEXAGONAL, edge=edge)
mamba.logic(provl, imOut, provl, "inf")
largeLinearErode(provl, imOut, 5, s, gridenba.HEXAGONAL, edge=edge)
mamba.logic(imOut, prov2, imOut, "inf")
n=n-s

def largeHexagonalDilate(imIn, imOut, size, edge=mamBMPTY):
Dilation by large hexagons using dilations &gk segments and the Steiner
decomposition property of the hexagon.
Edge effects are corrected by dilations wigmsposed decompositions
followed by sup operators.

This operator is quite complex to avoid eddeat$.

17

provl = mamba.imageMb(imin)

prov2 = mamba.imageMb(imIn)

sizemax = min(imin.getSize())/2

if size larger than sizemax, the operationtrbasterated to prevent edge effects.

n = size

mamba.copy(imin, imOut)

whilen > 0:
S = min(n, sizemax)
largeLinearDilate(imOut, provl, 6, s, gndamba.HEXAGONAL, edge=edge)
largeLinearDilate(provl, provl, 4, s, gmidamba.HEXAGONAL, edge=edge)
largeLinearDilate(imOut, prov2, 4, s, gndamba.HEXAGONAL, edge=edge)
largeLinearDilate(prov2, prov2, 6, s, gmidamba.HEXAGONAL, edge=edge)
mamba.logic(provl, prov2, provl, "sup")
largeLinearDilate(provl, prov2, 2, s, gmdamba.HEXAGONAL, edge=edge)
largeLinearDilate(imOut, provl, 1, s, gndamba.HEXAGONAL, edge=edge)
largeLinearDilate(provl, provl, 3, s, gmidamba.HEXAGONAL, edge=edge)
largeLinearDilate(imOut, imOut, 3, s, gridamba.HEXAGONAL, edge=edge)
largeLinearDilate(imOut, imOut, 1, s, gridamba.HEXAGONAL, edge=edge)
mamba.logic(provl, imOut, provl, "sup”)
largeLinearDilate(provl, imOut, 5, s, gndamba.HEXAGONAL, edge=edge)
mamba.logic(imOut, prov2, imOut, "sup")
n=n-s

Large squares

def largeSquareErode(imin, imOut, size, edge=mambaED):
Erosion by large squares using erosions by laegments and the Steiner
decomposition property of the square.

No edge effects are likely to happen with aasgustructuring element.

largeLinearErode(imin, imOut, 1, size, grid=nmEnB8QUARE, edge=edge)

largeLinearErode(imOut, imOut, 3, size, grid+ntea. SQUARE, edge=edge)
largeLinearErode(imOut, imOut, 5, size, grid+nte. SQUARE, edge=edge)
largeLinearErode(imOut, imOut, 7, size, grid+ntea. SQUARE, edge=edge)

def largeSquareDilate(imIn, imOut, size, edge=mamb&EM):
Dilation by large squares using dilations bhgégasegments and the Steiner
decomposition property of the square.

No edge effects are likely to happen with aasgustructuring element.

largeLinearDilate(imiIn, imOut, 1, size, grid=mba.SQUARE, edge=edge)

largeLinearDilate(imOut, imOut, 3, size, gridemba.SQUARE, edge=edge)
largeLinearDilate(imOut, imOut, 5, size, gridamba.SQUARE, edge=edge)
largeLinearDilate(imOut, imOut, 7, size, gridemba.SQUARE, edge=edge)

18

Large dodecagons

def _sparseConjugateHexagonErode(imin, imOut, sizge=eamba.FILLED):
Erosion by a conjugate hexagon. The structwglagient used by this operation
is not complete. Some holes appear insidetthetaring element. Therefore, this
operation should not be used to obtain trugugate hexagons dilations (for
internal use only).

provl = mamba.imageMb(imin)

prov2 = mamba.imageMb(imIn)

mamba.copy(imin, imOut)

val = mamba.computeMaxRange(imIn)[1]*int(edgevamba.FILLED)

for iin _sizeSplit(size):
mamba.copy(imOut, provl)
j = 2%
mamba.infFarNeighbor(provl, imOut, 1, jdgmamba.SQUARE, edge=edge)
mamba.shift(provl, provz, 2, i, val, gridemba.HEXAGONAL)
mamba.infFarNeighbor(prov2, imOut, 4, idgmamba.HEXAGONAL, edge=edge)
mamba.infFarNeighbor(prov2, imOut, 6, idgmamba.HEXAGONAL, edge=edge)
mamba.infFarNeighbor(provl, imOut, 5, jdgmamba.SQUARE, edge=edge)
mamba.shift(provl, provz2, 5, i, val, gridemba.HEXAGONAL)
mamba.infFarNeighbor(prov2, imOut, 1, idgmamba.HEXAGONAL, edge=edge)
mamba.infFarNeighbor(prov2, imOut, 3, idgmamba.HEXAGONAL, edge=edge)
j = 3*/2
mamba.infFarNeighbor(provl, imOut, 2, jdgmamba.HEXAGONAL, edge=edge)
mamba.infFarNeighbor(provl, imOut, 5, jdgmamba.HEXAGONAL, edge=edge)

def _sparseConjugateHexagonDilate(imin, imOut, sidgeemamba.EMPTY):
Dilation by a conjugate hexagon. The structyelement used by this operation
is not complete. Some holes appear insidetthetaring element. Therefore, this
operation should not be used to obtain tru¢ugaite hexagons dilations (for
internal use only).

provl = mamba.imageMb(imin)

prov2 = mamba.imageMb(imin)

mamba.copy(imin, imOut)

val = mamba.computeMaxRange(imIn)[1]*int(edgaeemba.EMPTY)

for iin _sizeSplit(size):
mamba.copy(imOut, provl)
j = 2%
mamba.supFarNeighbor(provl, imOut, 1,iggmamba.SQUARE, edge=edge)
mamba.shift(provl, prov2, 2, i, val, grideamba.HEXAGONAL)
mamba.supFarNeighbor(prov2, imOut, 4,iggmamba.HEXAGONAL, edge=edge)
mamba.supFarNeighbor(prov2, imOut, 6,iggmamba.HEXAGONAL, edge=edge)
mamba.supFarNeighbor(provl, imOut, 5,iggmamba.SQUARE, edge=edge)
mamba.shift(provl, prov2, 5, i, val, grideamba.HEXAGONAL)

19

mamba.supFarNeighbor(prov2, imOut, 1,iggmamba.HEXAGONAL, edge=edge)
mamba.supFarNeighbor(prov2, imOut, 3,ijgmamba.HEXAGONAL, edge=edge)
j=3*/2

mamba.supFarNeighbor(provl, imOut, 2,iggmamba.HEXAGONAL, edge=edge)
mamba.supFarNeighbor(provl, imOut, 5,iggmamba.HEXAGONAL, edge=edge)

def largeDodecagonalErode(imin, imOut, size, edge=naaRibLED):
Erosion by large dodecacagons (hexagonal dgdabically, it is the same
operation as the previous one where classioalans have been replaced
by erosions by large structuring elements, ahdreva "partial" erosion by
a conjugate hexagon is used.

nl =int(0.4641*size)

nl +=abs(nl % 2 - size % 2)

n2 =(size - n1)/2

_sparseConjugateHexagonErode(imin, imOut, dgeeedge)
largeHexagonalErode(imOut, imOut, n1, edge=gdge

def largeDodecagonalDilate(imIn, imOut, size, edge=maBMPTY):
Dilation by large dodecacagons (hexagonal gBdsically, it is the same
operation as the previous one where classitzdiahs have been replaced
by dilations by large structuring elements, aingre a "partial” dilation by
a conjugate hexagon is used.

nl =int(0.4641*size)

nl +=abs(nl % 2 - size % 2)

n2 =(size - n1)/2

_sparseConjugateHexagonDilate(imIn, imOut,aigje=edge)
largeHexagonalDilate(imOut, imOut, n1, edge=9dg

def _sparseDiamondDilate(imIn, imOut, size, edge=maBEMd&TY):
Dilation by a large diamond (losange) on squgi@ This diamond is not
completely filled. It is for internal use only.

prov = mamba.imageMb(imIn)

mamba.copy(imin, imOut)

for iin _sizeSplit(size):
mamba.copy(imOut, prov)
mamba.supFarNeighbor(prov, imOut, 1, idgmamba.SQUARE, edge=edge)
mamba.supFarNeighbor(prov, imOut, 3, idgmamba.SQUARE, edge=edge)
mamba.supFarNeighbor(prov, imOut, 5, idgmamba.SQUARE, edge=edge)
mamba.supFarNeighbor(prov, imOut, 7, idgmamba.SQUARE, edge=edge)

def _sparseDiamondErode(imin, imOut, size, edge=manibaED):

20

Erosion by a large diamond (losange) on sqgade This diamond is not
completely filled. It is for internal use only.

prov = mamba.imageMb(imIn)

mamba.copy(imin, imOut)

for iin _sizeSplit(size):
mamba.copy(imOut, prov)
mamba.infFarNeighbor(prov, imOut, 1, i,dgmamba.SQUARE, edge=edge)
mamba.infFarNeighbor(prov, imOut, 3, i,dgmamba.SQUARE, edge=edge)
mamba.infFarNeighbor(prov, imOut, 5, i,dmamba.SQUARE, edge=edge)
mamba.infFarNeighbor(prov, imOut, 7, idgmamba.SQUARE, edge=edge)

def largeOctogonalErode(imin, imOut, size, edge=mafhaED):
Erosion by a large octogon (square grid). Thisration uses erosions
by large squares and large diamonds previowsigpet.

nl =int(0.41421*size + 0.5)

n2 = size - nl

largeSquareErode(imin, imOut, n1, edge=edge)
_sparseDiamondErode(imOut, imOut, n2, edge=edge

def largeOctogonalDilate(imiIn, imOut, size, edge=maBMPTY):
Dilation by a large octogon (square grid). Toyeration uses dilations
by large squares and large diamonds previousiged.

nl =int(0.41421*size + 0.5)

n2 = size - nl

largeSquareDilate(imin, imOut, n1, edge=edge)
_sparseDiamondDilate(imOut, imOut, n2, edge®s¢dg

21

