Loss of Life Expectancy related to temporal evolution of PM2.5 considered within energy scenarios in Europe
Mireille Lefèvre, Isabelle Blanc, Benoît Gschwind, Thierry Ranchin, Kamila M. Drebszok, Artur Wyrwa

► To cite this version:
Mireille Lefèvre, Isabelle Blanc, Benoît Gschwind, Thierry Ranchin, Kamila M. Drebszok, et al.. Loss of Life Expectancy related to temporal evolution of PM2.5 considered within energy scenarios in Europe. SETAC Europe 23rd Annual Meeting, May 2013, Glasgow, United Kingdom. SETAC Europe 23rd Annual Meeting, 1 page, 2013. hal-00836526

HAL Id: hal-00836526
https://hal-mines-paristech.archives-ouvertes.fr/hal-00836526
Submitted on 21 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fine particulates: a major pollutant for human health

EnerGEO project: simulation of energy scenarios and impact assessment on environment and human health: http://www.energeo-project.eu

Loss of Life Expectancy: a key indicator to compare impacts from energy scenarios

- Baseline scenario: current European legislation with the objective to reduce some pollutants and more specifically PM$_{2.5}$, fine particulates of 2.5 µm size.
- Evaluation of different electricity energy scenarios compared to the baseline, studying their impacts on life expectancy.
- **Static** standard evaluation: PM$_{2.5}$ concentration is considered constant during the exposed lifetime of the population.

Necessity to integrate the temporal dimension of scenarios

- Energy scenarios horizon: 2050.
- Important variation of PM$_{2.5}$ exposure during the population whole lifetime.
- Proposal of a **dynamic** method to compare scenarios accounting for their temporal dimension.

Maps of impacts on human health

Data sources

- IIASA$^{(1)}$ for PM$_{2.5}$ concentration maps derived from GAINS model for the baseline scenario in years 2005, 2030, 2040 and 2050.
- United Nations$^{(2)}$ for the 5-years cohorts size and mortality rates per country, from 1950 to 2100. The population under concern is people older than 30 years in year 2005.
- SEDAC$^{(3)}$ for density maps of population in years 2005, 2010 and 2015.
- Pope (2002)$^{(4)}$ for the relative risk value for a population older than 30 years exposed to PM$_{2.5}$.

Accounting for the dynamic of the scenario

- Algorithm based on the approach recommended by the « Task Force on Health »$^{(5)}$ and IIASA$^{(1)}$: loss of life expectancy is the difference between life expectancy calculated with PM$_{2.5}$ concentrations observed along the population lifetime, and life expectancy without exposure.
- Temporal interpolations of PM$_{2.5}$ concentrations performed in the scenarios (from 2005 to 2050) along the population lifetime.

Conclusions

- Significant difference in results of about 20% with lower impacts for the **dynamic** model which takes into account the temporal evolution of the pollutant concentrations.
- More realistic approach in the framework of scenarios comparison.
- Tables and maps for different energy scenarios available on line at the Platform of Integrated Assessment (PIA) of the European EnerGEO project: http://viewer.webservice-energy.org/energeo_pia/index.htm

The research leading to these results receives funding from European Community’s Seventh Framework Programme (FP7, 2007-2013) under Grant Agreement Number 226364.

Contact: mireille.lefevre@mines-paristech.fr Web Site: www.oie.mines-paristech.fr