Towards a Hand Skeletal Model for Depth Images Applied to Capture Music-like Finger Gestures

Abstract : The Intangible Cultural Heritage (ICH) implies gestural knowledge and skills in performing arts, such as music, and its preservation and transmission is a worldwide challenge according to UNESCO. This paper presents an ongoing research that aims at the development of a computer vision methodology for the recognition of music-like complex hand and finger gestures performed in space. This methodology can contribute both to the analysis of classical music playing schools, such as the European and the Russian, and to the finger gesture control of sound as a new interface for musical expression. An implementation of a generic method for building body subpart classification model applied in musical gestures is presented. A robust classification model from a reduced training dataset, as well as a method for spatial aggregation of the classification results, which provides a confidence measure on each hand subpart location is developed. A 80% pixel-wise classification accuracy and 95% ponctual subpart location accuracy is achieved when musical finger gestures with a semi-closed hand are performed in front of the camera and the rotation around camera axis is not too important.
Type de document :
Communication dans un congrès
10th Int. Symposium on Computer Music Multidisciplinary Research (CMMR'2013), Oct 2013, Marseille, France. 2013
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00875721
Contributeur : Fabien Moutarde <>
Soumis le : mardi 22 octobre 2013 - 15:40:18
Dernière modification le : vendredi 27 octobre 2017 - 17:30:01
Document(s) archivé(s) le : jeudi 23 janvier 2014 - 04:27:17

Fichier

finger_music-like_gestures_CMM...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00875721, version 1

Collections

Citation

Arnaud Dapogny, Raoul De Charette, Sotiris Manitsaris, Fabien Moutarde, Alina Glushkova. Towards a Hand Skeletal Model for Depth Images Applied to Capture Music-like Finger Gestures. 10th Int. Symposium on Computer Music Multidisciplinary Research (CMMR'2013), Oct 2013, Marseille, France. 2013. 〈hal-00875721〉

Partager

Métriques

Consultations de
la notice

462

Téléchargements du document

400