B. Afsari, Riemannian $L^{p}$ center of mass: Existence, uniqueness, and convexity, Proc. of the, pp.655-73, 2010.
DOI : 10.1090/S0002-9939-2010-10541-5

B. Afsari, R. Tron, and R. Vidal, On the Convergence of Gradient Descent for Finding the Riemannian Center of Mass, SIAM Journal on Control and Optimization, vol.51, issue.3, 2011.
DOI : 10.1137/12086282X

J. Angulo, Supremum/Infimum and Nonlinear Averaging of Positive Definite Symmetric Matrices, Matrix Information Geometry, pp.3-34, 2012.
DOI : 10.1007/978-3-642-30232-9_1

URL : https://hal.archives-ouvertes.fr/hal-00835158

J. Angulo, Riemannian L p averaging on the Lie group of nonzero quaternions Adv Appl Clifford Al, DOI 10, pp.6-013, 1007.

M. Arnaudon, C. Dombry, A. Phan, and L. Yang, Stochastic algorithms for computing means of probability measures, Stochastic Processes and their Applications, vol.122, issue.4, 2011.
DOI : 10.1016/j.spa.2011.12.011

URL : https://hal.archives-ouvertes.fr/hal-00540623

M. Arnaudon and F. Nielsen, On approximating the Riemannian 1-center, Computational Geometry, vol.46, issue.1, pp.93-104, 2013.
DOI : 10.1016/j.comgeo.2012.04.007

URL : https://hal.archives-ouvertes.fr/hal-00560187

F. Barbaresco, Geometric radar processing based on Fréchet distance: Information geometry versus optimal transport theory, Proc of International Radar Conference (IRS'11), 2011.

P. J. Basser, J. Mattiello, and D. Lebihan, MR diffusion tensor spectroscopy and imaging, Biophysical Journal, vol.66, issue.1, pp.259-267, 1994.
DOI : 10.1016/S0006-3495(94)80775-1

URL : https://hal.archives-ouvertes.fr/hal-00349721

R. Bhatia, Positive definite matrices, 2007.
DOI : 10.1515/9781400827787

URL : https://hal.archives-ouvertes.fr/hal-01500514

R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds???II, The Annals of Statistics, vol.33, issue.3, pp.1-29, 2003.
DOI : 10.1214/009053605000000093

M. B?-adoiu and K. Clarkson, Smaller core-sets for balls, Proc of the fourteenth annual ACM- SIAM symposium on Discrete algorithms (SIAM), pp.801-803, 2003.

T. Brox, J. Weickert, B. Burgeth, and P. Mrázek, Nonlinear structure tensors, Image and Vision Computing, vol.24, issue.1, pp.41-55, 2006.
DOI : 10.1016/j.imavis.2005.09.010

T. Brox, R. Van-den-boomgaard, F. Lauze, J. Van-de-weijer, J. Weickert et al., Adaptive Structure Tensors and their Applications, eds) Visualization and Image Processing of Tensor Fields, pp.17-47, 2005.
DOI : 10.1007/3-540-31272-2_2

URL : https://hal.archives-ouvertes.fr/inria-00548598

B. Burgeth, S. Didas, L. Florack, and J. Weickert, A generic approach to diffusion filtering of matrix-fields, Computing, vol.26, issue.2, pp.179-97, 2007.
DOI : 10.1007/s00607-007-0248-9

S. Fiori and T. Toshihisa, An Algorithm to Compute Averages on Matrix Lie Groups, IEEE Transactions on Signal Processing, vol.57, issue.12, pp.4734-4777, 2009.
DOI : 10.1109/TSP.2009.2027754

P. Fletcher, S. Venkatasubramanian, and S. Joshi, The geometric median on Riemannian manifolds with application to robust atlas estimation, NeuroImage, vol.45, issue.1, pp.143-52, 2009.
DOI : 10.1016/j.neuroimage.2008.10.052

W. Förstner and E. Gülch, A fast operator for detection and precise location of distinct points, corners and centres of circular features, Proc. of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pp.281-304, 1987.

M. Fréchet, LesélementsLes´Lesélements aléatoires de nature quelconque dans un espace distancié, Ann Inst H Poincaré, vol.10, pp.215-310, 1948.

F. Guichard and J. Morel, A Note on Two Classical Enhancement Filters and Their Associated PDE's, International Journal of Computer Vision, vol.52, issue.2/3, pp.153-60, 2003.
DOI : 10.1023/A:1022904124348

H. Karcher, Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.509-550, 1977.
DOI : 10.1002/cpa.3160300502

D. Kendall, Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces, Bulletin of the London Mathematical Society, vol.16, issue.2, pp.18-121, 1984.
DOI : 10.1112/blms/16.2.81

H. Knutsson, Representing Local Structure Using Tensors II, Proc of 6th Scandinavian Conf. on Image Analysis. Oulu University, pp.244-51, 1989.
DOI : 10.1007/978-3-540-75757-3_110

U. Köthe, Edge and Junction Detection with an Improved Structure Tensor, Pattern Recognition, pp.25-32, 2003.
DOI : 10.1007/978-3-540-45243-0_4

J. Larrey-ruiz, R. Verdu-monedero, J. Morales-sanchez, and J. Angulo, Frequency domain regularization of d-dimensional structure tensor-based directional fields, Image and Vision Computing, vol.29, issue.9, pp.620-650, 2011.
DOI : 10.1016/j.imavis.2011.06.004

URL : https://hal.archives-ouvertes.fr/hal-00658942

H. Le, Abstract, LMS Journal of Computation and Mathematics, vol.1485, pp.193-200, 2004.
DOI : 10.1239/aap/999188316

URL : https://hal.archives-ouvertes.fr/inria-00001031

H. Lopuhaä and P. Rousseeuw, Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices, The Annals of Statistics, vol.19, issue.1, pp.229-277, 1991.
DOI : 10.1214/aos/1176347978

M. Moakher, A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices, SIAM Journal on Matrix Analysis and Applications, vol.26, issue.3, pp.735-782, 2005.
DOI : 10.1137/S0895479803436937

H. Nagel and A. Gehrke, Spatiotemporally adaptive estimation and segmentation of OF-fields, 1998.
DOI : 10.1007/BFb0054735

L. M. Ostresh, On the Convergence of a Class of Iterative Methods for Solving the Weber Location Problem, Operations Research, vol.26, issue.4, pp.597-609, 1978.
DOI : 10.1287/opre.26.4.597

L. Pizarro, B. Burgeth, S. Didas, and J. Weickert, A generic neighbourhood filtering framework for matrix fields computer vision, Proc of ECCV'08, pp.521-553, 2008.

D. Tschumperlé, D. Deriche, and R. , Orthonormal vector sets regularization with PDE's and applications, International Journal of Computer Vision, vol.50, issue.3, pp.237-52, 2002.
DOI : 10.1023/A:1020870207168

E. Weiszfeld, Sur le point pour lequel la somme des distances de n points données est minimum, Tohoku Math J, vol.43, pp.355-86, 1937.

L. Yang, Abstract, LMS Journal of Computation and Mathematics, vol.43, pp.461-79, 2010.
DOI : 10.1112/S1461157020090531

URL : https://hal.archives-ouvertes.fr/hal-01153717