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Abstract. SIMD hardware accelerators offer an alternative to many-
cores when energy consumption and performance are critical. For scien-
tific computing, GPGPUs are used in many computers of the top-500.
But embedded processors also use accelerators.

However such heterogeneous platforms trade ease of developments for
performance: The application code and the data must be split between
the host and the accelerator, synchronizations and communications be-
tween host and accelerator must be added, and accelerator hardware
constraints must be taken into account by the programmer.

To ease application development, we present an algorithm to automat-
ically externalize the execution of a parallel loop using a synchronous
master/slave protocol.

The source-to-source transformation process is incrementally consistent
and the transformed code can be executed at any step of the transforma-
tion algorithm, which make application and compiler debugging easier
and possible without the target hardware.

This article details the source-to-source parallel loop externalization algo-
rithm and the new elementary program transformations which are used.

Unlike previous work based on annotations or polyhedral model, it relies
on interprocedural array region analysis, which embraces more situations
than the polyhedral model while still not relying on user input.

It has been implemented in the PIPS framework and its results are given
at each transformation step for an image processing example.

Keywords: compilation, source-to-source transformation, convex array
regions, heterogeneous computing, SIMD architecture

1 Motivation and Context

Ranging from General Purpose Graphical Processing Unit (GPGPU) to Field
Programmable Gate Array (FPGA), hardware accelerators are widely used to
deliver high performance for specific applications. To benefit from the promised
speedups, developers have to write machine-level code (VHDL, assembly . . . ),
to map their algorithms to complex video primitives (OpenGL) or to master
dedicated extensions (DSP libraries).



Numerous attempts have been made to enhance the programmability of such
accelerators by using C as a base language. Most of them[18,10,9] rely on ex-
tensions to match hardware specificities. However, portability is lost and the
generation process is a black-box for the developer, who does not understand
the mapping between the code and the generated program. Moreover, except for
CUDA, such an approach does support code debugging and provides very little
way of the simulating resulting code. Finally, there is an obvious duplication
of efforts, for hardware accelerators share some high-level concepts, while being
very different in their implementation.

Offloading computations on a remote accelerators with its own memory is
similar to improving cache efficiency [7,14]: Code must be reorganized in order
to improve locality, and loops be sized for live data to fit into the cache [6,3].
Data layouts can be modified. In both cases, we want to minimize the memory
traffic.

Code generation for hardware accelerators has regained in popularity since
the appearance of GPGPUs, but it often relies on user-provided informations
through annotations [15,11,5,19] and target only a kind of accelerator.

The paper by Leung & al. [16] presents a sequence of program transforma-
tions to map so-called ”text-book C” code onto a GPU using the R-Stream
compiler. Although R-Stream is based on the polyhedral model, the mapping
process is based on phases, with decisions made early more or less outdone by
later phases (e.g. loop fusion after the scheduling phase). The general R-Stream
framework dedicated to homogeneous computing is re-used and key issues such
as communication generation are left out of the paper. Also, array allocation
and layout are dealt with late in the optimization process.

Unlike their approach, we address heterogeneous computing head first. We
generate code both for the host and the accelerator. We optimize array allocation
on the accelerator globally and we generate communication code. We also add
new iterations, which is not part of the polyhedral model. Furthermore, our user
keeps control of the code transformation at each step: source code is available
to understand and to execute. However, we do not deal with all GPU specifics
as our primary target accelerator is a custom SIMD processor.

In this paper, we propose a study of concepts and constraints shared by
hardware accelerators and propose generic, high-level transformations that can
be parameterized to fit their specific needs. Those transformations rely on inter-
procedural array region analysis for which we introduce concepts in §3.

We finally focus on a FPGA-based specific accelerator dedicated to image
processing that embodies most of the studied issues. On this practical example
and a challenging code that requires interpocedural analysis of array of struc-
tures, we demonstrate the validity of the approach by exhibiting compilation
steps.

All experiments are carried out on the PIPS [13] source-to-source compiler
infrastructure.



2 Context

At first glance, there is not much in common between a GPGPU, the SSE in-
struction set and FPGA-based machines. One is accessed via PCI bus to perform
high performance computing, the other is located on the CPU and traditionally
enhances multimedia computations and the last may be an embedded hardware
used for videos surveillance. But experience shows that while very different, hard-
ware simd accelerators share some very similar high-level concepts and impose
one kind of constraints to the developers[20].

2.1 Execution Model

They all share the same execution model:

1. Some data are copied-in (a/synchronously) to a remote accelerator, copies
which often suffer from a limited bandwidth. Depending on the target, this
implies an allocation process or a manual handling of accelerator memory;

2. a computation kernel is activated;
3. data resulting from the computation are retrieved by the host.

This is the traditional Load - Work - Store model. GPGPU’s and SSE obviously
use this model.

2.2 Memory Constraints

As a consequence of this execution model, memory transfers play a critical role
for performance and must be dealt with very carefully. We can observe the
following similarities:

data transfers overhead: we must limit them to a minimum;
remote memory is limited: computations may have to be split, raising var-

ious issues at the boundaries;
data transfer are constrained: data alignment may be required or prefer-

able, and Direct Memory Access (DMA) may be capable of transferring
only fixed size amount of data (think of the SSE mm load ps instruction).

As an illustration, the Terapix simd accelerator fromThales [4] has a limited
memory size of 512 short integers per processor and the current x86 processors
only holds 16 SSE registers. Tesla GPU cards have a global memory of 1 GB
or more but the PCI-e ×16 gen2 transfer rates are very slow compared to the
CPU or GPU registers.

2.3 SIMD Processor Constraints

We are considering a particular class of hardware processors: the SIMD proces-
sors. They offer important speed-up due to their capability of executing the same
instruction N times at once. They can be viewed as N Processing Element (PE)
each executing the same code on different input. The implication on code control
flow are well known:



1. Vector loops are critical;

2. Loop sizes matter;

3. Branches are to be avoided, though sometimes possible via masked execu-
tion.

The number of processor plays a key role, and is all the more important when
masked execution is not possible.

2.4 Summary

In this section, we highlighted the three major concerns linked to the usage of
hardware simd accelerators: the load-work-store model, the data transfers and
the number of PE. We propose the algorithm in Alg. 1 to address them and
generate automatically host and accelerator codes from a unique C code.

Algorithm 1 AcceleratorCodeGeneration(S, PE,M)

1: S ← statement to optimize
2: PE ← number of elementary processors
3: M ← total memory size of the acceelrator
4: for all parallel loop nest l in S do

5: if depth(l) = 1 then

6: Strip mine l by PE

7: end if{In case of a loop nest with depth(l) ≥ 2, the outermost loop is selected}
8: Declare a new variable N

9: Apply loop expansion to the outermost loop of l so that the number of iterations
is a multiple of PE {§ 4}

10: Apply loop expansion to the innermost loop of l so that the number of iterations
is a multiple of N {§ 4}

11: Apply symbolic tiling to loop nest with tiling matrix

(

|PE| 0
0 N

)

{see [12]}

12: Compute the memory footprint of the outermost tile loop of l as a polynomial
P (N, σ) {§ 5.2}

13: Find the largest integer e(σ) satisfying P (N, σ) ≤ N and add ”N = e; before
the external loop nest {§ 5.2}

14: {Note: The code is still symbolic in N . N does not seem to go away in general.
A new symbol N is needed for each loop nest in S}

15: {Note: we have two host loops over the tiles and two tile loops to execute each
tile. The outermost tile loop is the loop over the elementary processors.}

16: Apply statement isolation on the outermost tile loop and generate memory trans-
fers {§ 5.3}

17: Apply outlining to the outermost tile loop to generate the host call code to the
accelerator and to the innermost tile loop to generate the accelerator kernel {§ 6}

18: Further process the kernel code to generate target’s assembly {not detailed in
this paper}

19: end for



The remaining of the paper is organized as follows: Section § 3 introduces
array region concept, the next two (§ 4,§ 5) present innovative transformations
which, combined with the traditional loop transformations loop tiling and par-
allel loop detection make it possible to generate efficient code for such hetero-
geneous machines. Separation between host and target is explained in § 6, § 7
applies the algorithm to a challenging example and § 8 concludes.

3 Interprocedural Array Regions

3.1 Definitions

Interprocedural convex array region analysis[8] is a powerful tool for program
analysis. We will only give a quick overview of the main concepts here.

The convex array region for a variable v is computed for a program state σ

at a statement S. It is denoted RS,σ(v) and represents the set of indices of v
accessed by S in state σ. That is RS,σ(v) = {v[φ]|C(σ).φ ≤ 0} where C is a
constraints matrix depending on σ. We distinguish four kinds of regions, based
on their access type:

Read Regions gather all elements used by S and are denoted RS,σ
r (v)

Write Regions gather all indices defined by S and are denoted RS,σ
w (v)

In Regions gather all elements whose initial values are used by S and are
denoted RS,σ

in (v)

Out Regions gather all elements defined by S and used by one of its continu-
ation and are denoted RS,σ

out(v)

By definition, we have RS,σ
out(v) ⊂ RS,σ

w (v) and RS,σ
in (v) ⊂ RS,σ

r (v). Each region
can be labelled as may or must:

May Regions each region elements may be accessed or not (denoted, e.g.
RS,σ

rmay
(v))

Must Regions each region element is always accessed (denoted, e.g.RS,σ
rmust

(v)).

Convex array regions are defined by polyhedra, and under the assumption of
a correct program, they are bounded by the hypercube defined by the variable
definition space and thus define polytopes when the store is known.

In the following we use the operator to denote the smallest hypercube en-
closing a polytope, and the |.| operator to represent the volume of a region, given
by an Ehrhart polynomial[2]. Note however that the volume of an hypercube is
given by a regular polynomial only depending on the program state σ. The ⊔
operator will represent the convex union of polyhedra.

We also introduce a new kind of region, the declaration region of a variable,
denoted Rσ

def (v). This region contains all possible legal indices of v. It depends
of the store σ because of C dependent types.



3.2 Link with Hardware Constraints

Array regions offer a convenient formalism to model the behavior of a statement
S. For any array v ∈ S:

Memory Footprint :
∑

v∈S |RS,σ
r (v) ∪RS,σ

w (v)|

Copy out elements: RS,σ
out,may+must(v)

Copy in elements: RS,σ
in,may+must(v)∪RS,σ

out,may(v). The reason why we include

RS,σ
out,may(v) is that an element of RS,σ

out,may(v) may not have been modified
by S and thus we have to ensure its value is correct by copying it in.

If we model accelerator memory as one big array m, we can summarize the
constraint over the accelerator memory capacity using 3.2 into

∑

v∈S

|RS,σ
r (v) ∪RS,σ

w (v)| < |Rσ
def (m)| (1)

In Section 5, we show how to turn these equations into pieces code, using
elementary transformations which are part of our algorithm (see Alg. 1).

4 Loop Expansion

We explained in Section 2 how the number of PE or the amount of available
memory constrain our transformation.

We propose to expand the loop iteration set so that it matches the particular
requirement of our hardware. This is different from array padding, because we
really add statements in the execution flow. We can take two approaches when
expanding a loop:

1. Guard the loop body so that no extra instruction, except the guard test, is
executed. This is a conservative approach

2. Insert “new statement” in the execution flow. The legality of the insertion
must be checked.

4.1 Guarding Loop Body

An option to enforce a given loop trip count is to guard the loop body with the
initial iteration set. However such a solution is not ideal:

1. Branching is not always supported on SIMD architecture;
2. when supported through masking, it may degrade performance;
3. The guard evaluations are overhead.

We make a step forward if we distribute the guard on each statement of the
body and examine each guarded statement for potential guard removal. A simple
strategy here is to remove guards on statements that only write private variables,
as shown by following example. Combined with scalarization, this strategy limits
the number of guard inserted in the loop body. To go further and remove all
guards, we have to consider a wider problem, the legality of inserting a new
statement in the control flow.



int i , j , s z =10,a [ sz ] ;
for ( i =0; i<sz +1; i++) {
i f ( i<sz ) j=a [ i ]∗ a [ i ] ;
i f ( i<sz ) a [ i ]= j ;
}

int i , j , s z =10,a [ sz ] ;
for ( i =0; i<sz +1; i++) {
j=a [ i ]∗ a [ i ] ;
i f ( i<sz ) a [ i ]= j ;
}

4.2 Statement Insertion

Let S be a statement to be inserted in a program. What is the legality of such
an insertion ? We must take care of

1. Syntactic validity: inserted statement has a valid syntax ;
2. Data-flow validity: inserted statement does not change the code data-flow;
3. Control-flow validity: inserted statement does not raise any exceptions.

In our case, Prop. 1 is guaranteed because we expand the loop iteration space:
inserted statement already exist and its syntax is valid. To ensure Prop. 2, we
use a pragmatic approach: once the statement is inserted, we compute its out
regions. If they are empty, it asserts the statement does not change the data-
flow. This approach is similar to the one used for loop-fusion: merge the loop
and verify the dependency graph has not been altered.

Prop. 3 requires more care. We will focus on memory error and ignore arith-
metic errors. Inserted statement may access data that have not been allocated,
trough unmanaged subscripting. This subsection proposes a region based method
to guarantee such access do not occur:

Let Rr(S) be the read region of S and Rw(S) its write region, as described
in section 3. For each array variable v accessed in S, we also define Rdef (v)
as its declaration region. For example, the declaration region of int a [10][ n] is
{a[φ0][φ1]|0 ≤ φ0 < 10, 0 ≤ φ1 < n}. Using this definition, we define a new
variable v′ whose declaration region is given by Rdef (v

′) = Rdef (v) ⊔ Rw(S) ∪
Rr(S) where ⊔ is the convex union. Substituting v′ to v in the declaration scope
of v suppress memory errors caused by the insertion of S (which is in the scope
of v). However this changes the type of v and may disturb the execution flow: in
C the sizeof construct may create a dependence on the type of a variable, and
pointer arithmetic also evaluate differently depending on the pointer type. In our
implementation, we detect such construct and abort the insertion process if any.
Likewise we do not perform inter-procedural type change and rely on inlining
when such analysis would be needed.



4.3 Loop Expansion Algorithm

Finally, the loop expansion process is implemented as explained in Alg. 2, the
inputs of which are a loop Li and a number of iteration nb iter

Algorithm 2 LoopExpansion(Li, nb iter)

1: copy body of Li into statement Sdup

2: insert statement Sdup after Li

3: if statement insertion on Sdup succeeds then
4: remove Sdup

5: perform loop expansion without guard
6: else

7: remove Sdup

8: perform loop expansion with guards
9: end if

5 From Array Region to User Code

5.1 Preamble

Before going into the details, we can get rid of the constraints related to the
number of PE: In the tiling operation mentioned in Alg. 1, first tiling parameter
must be PE.

5.2 Matching Size Constraints

We presented in Eq.1 the inequality that ties array regions and accelerator mem-
ory. Because of the simplification made in previous section, we can reword the
inequality into:

∑

v∈S

|RS,σ
r (v) ⊔RS,σ

w (v)| < |Rσ
def (m)| (2)

However, there are no unknown in this inequality, which means it is either
true or false. As a consequence we will introduce a new parameter t in σ, express
Eq.2 as a function f of t and focus on finding a value of t that optimizes f.

The key transformation here is parametric tiling[12]. Picking a parallel loop
l, we will tile it by a factor of t and compute parametric region of the tile. Note
that combined with the statement in §5.1, this gives us a tiling matrix of the

form

(

t 0
0 |PE|

)

.

Yet tiling can be impossible, for example when a single parallel loop is con-
sidered. In that case we use two levels of strip mining as in following example:

for ( i =0; i<n ; i++)
f ( i , S ) ;



which is transformed into:

for ( k=0;k<n ; k+=t ∗PE)
for ( j =0; j<PE; j++)
for ( i=k+j ∗ t ; i<MIN(k+( j +1)∗ t , n ) ; i++)
f ( i , S ) ;

That way we introduce a dependence over t in regions of S and compute them.
This results in the same inequality as Eq.2 with the unknown being t ∈ σ.

For classical codes, f will be a linear expression of the form a(σ)× t+ b(σ) from
which we can easily deduce the exact integer value of t that optimizes Eq. 2,
assuming a(σ) 6= ∞

t =

{

⌈ b(σ)
a(σ)⌉ |a(σ) < 0

⌊ b(σ)
a(σ)⌋ |a(σ) > 0

gives a state dependent formula for initializing t. If f is a higher level polynomial,
we forward decision to a runtime function that uses polynomial root set and its
highest degree coefficient sign to find an integer solution.

5.3 Statement Isolation

Dealing with accelerators means working in a separated memory and exchanging
data between host and accelerator memories. The statement isolation transfor-
mation just does that: select a code statement and make sure all memory accesses
in this statement are made to a new memory space allocated for this purpose. In
order to keep consistency, data transfers are generated between this new memory
and the old one. Below, we consider a program statement S in state σ and a
array v referenced in S.

Memory Allocation From §3.2, we already know the memory footprint of v in
S. The problem is to allocate in S a variable to hold the relevant part of Rσ

def (v).
For the set gotten from the union in 3.2 may not be convex, we may need to
allocate several variables. To avoid this difficulty (and at the cost of possible extra
transfers) we use a convex union instead of a set union in the formula, ending up
with a single replacement variable v′ for which Rσ

def (v
′) = RS,σ

r (v) ⊔ RS,σ
w (v).

And because C language enforces declaration region to be hypercubes, we end

up with Rσ
def (v

′) = RS,σ
r (v) ⊔RS,σ

w (v). Note that such a definition does not
guarantee that the smallest element in Rσ

def (v
′) is (0, . . . , 0), so we introduce a

translation vector t to align the references to the v′ declaration.

Data transfers Data transfers from v to v′ and from v′ back to v consist
in direct translation of regions defined in 3.2 and 3.2. Such transfers can be
generated using classical polyhedra scanning [1] combined with the translation
vector t. From the generated loop we can deduce the DMA call needed by the
replacing innermost loops with equivalent memcpy.



Illustration Following code snippets show the result of region analysis on a
simple tiled alphablending kernel: Only read and write array regions are repre-
sented as a set of constraints over array indices, as demonstrated in code 1.1

Listing 1.1: Convex array regions example

void a lphab lend ing ( int n , short s r c0 [ n ] [ n ] , short s r c1 [ n ] [ n ] ,
short r e s [ n ] [ n ] ) {

unsigned int i , j ;
//PIPS genera ted v a r i a b l e
unsigned int i t , j t ;
for ( i t = 0 ; i t <= n−1; i t += 4)
for ( j t = 0 ; j t <= n−1; j t += 10)

// <r e s u l t [ PHI1 ] [ PHI2]−W−MAY−{ i t<=PHI1 , PHI1<=i t +4, PHI1+1<=n ,
j t<=PHI2 , PHI2<=j t +10, PHI2+1<=n , 0<=i t , 0<=j t , j t+1<=n}>

// <src0 [ PHI1 ] [ PHI2]−R−MAY−{ i t<=PHI1 , PHI1<=i t +4, PHI1+1<=n ,
j t<=PHI2 , PHI2<=j t +10, PHI2+1<=n , 0<=i t , 0<=j t , j t+1<=n}>

// <src1 [ PHI1 ] [ PHI2]−R−MAY−{ i t<=PHI1 , PHI1<=i t +4, PHI1+1<=n ,
j t<=PHI2 , PHI2<=j t +10, PHI2+1<=n , 0<=i t , 0<=j t , j t+1<=n}>
for ( i = i t ; i <= MIN( i t +4, n−1) ; i += 1)
for ( j = j t ; j <= MIN( j t +10, n−1) ; j += 1)
r e s u l t [ i ] [ j ] = (40∗ s r c0 [ i ] [ j ]+(100−40)∗ s r c1 [ i ] [ j ] ) /100 ;

}

The result of statement isolation is shown in code 1.2: three new arrays
have been allocated, three function calls take care of data movements and array
indices are translated.

6 Separate Host and Accelerator Code

Once all size constraints have been met, we separate the host code, which per-
forms the load-work-store calls, from the accelerator code, which performs the
computation on isolated data.

This is done with the outlining transformation[17]: given a statement in an
execution flow, it outlines the statement to a new procedure, adjusting call
parameters to keep the execution flow correct. If we apply such a transformation
to the loop over the PE we make the load-work-store triplet appear and have a
new function to offload on the accelerator.

However the outlined function is not the function that will be executed by
each PE: we have to outline the outlined function a second time to make it
appear. Indeed the loop over the PE does not appear neither on host code nor
on accelerator code, so we outline the body of the loop in a new function, the



Listing 1.2: Statement isolation on alphablending kernel

void a lphab lend ing ( short s r c0 [ 4 0 ] [ 4 0 ] , short s r c1 [ 4 0 ] [ 4 0 ] ,
short r e s u l t [ 4 0 ] [ 4 0 ] ) {

unsigned int i , j ;
unsigned int i t , j t ;
for ( i t =0; i t <=3; i t +=1)
for ( j t =0; j t <=3; j t +=1) {
//PIPS genera ted v a r i a b l e
short r e s u l t 0 [ 1 0 ] [ 1 0 ] , s r c00 [ 1 0 ] [ 1 0 ] , s r c10 [ 1 0 ] [ 1 0 ] ;
copy in ( src10 , 2 ,10 ,10 , &s r c1 [10∗ i t ] [ 1 0 ∗ j t ] , 2 , 4 0 , 4 0 ) ;
copy in ( src00 , 2 ,10 ,10 , &s r c0 [10∗ i t ] [ 1 0 ∗ j t ] , 2 , 4 0 , 4 0 ) ;
for ( i =10∗ i t ; i<=10∗ i t +9; i+=1)
for ( j =10∗ j t ; j<=10∗ j t +9; j+=1)
r e s u l t 0 [ i −10∗ i t ] [ j−10∗ j t ]=(40∗ s r c00 [ i −10∗ i t ] [ j−10∗ j t

]+60∗ s r c10 [ i −10∗ i t ] [ j−10∗ j t ] ) /100 ;
copy out ( r e su l t , 2 , 40 , 40 , &r e s u l t 0 [10∗ i t ] [ 1 0 ∗ j t ] , 2 ,

10 , 10) ;
}
}

accelerator code. This intermediate function must not appear in the final code,
however its presence is critical in our process:

1. It preserves the sequential meaning of the code;

2. All transformation are given valid code as input;

3. It provides a functional simulator of the generated code.

Points 3 is especially important: even if we target a specific hardware acceler-
ator, the set of compiled source keeps it functional behavior. As a consequence,
a code transformed with the described series of transformations can be compiled
and executed on regular architecture and debugged with classical tools.

7 Illustration

In this section, we use a running example 1.3 to illustrate all the steps of our al-
gorithm, combining statement isolation, symbolic tiling and hardware constraint

equations to meet the constraints of the accelerator.

Unlike [16], we tackle non static-control codes involving while loops, gotos
and structures.

For this example, we will consider the Terapix processor [4] which has 128
PE and will assume an extended memory of 214 integers instead of the initial
28. We put no constraints on the number of registers.



Listing 1.3: Average power kernel

typedef struct { f loat re ; f loat im ;} Cp l f l o a t ;
f loat CplAbs ( Cp l f l o a t const ∗ c ) {
return s q r t f ( c−>re ∗c−>re+c−>im∗c−>im) ;
}
void average power ( int Nth , int Nrg , int Nv, Cp l f l o a t p t r i n [

Nth ] [ Nrg ] [ Nv ] , f loat Pow[ Nth ] ) {
int th , v , rg ;
for ( th=0; th<Nth;++th )
for ( rg=0; rg<Nrg ; rg++)
for ( v=0; v<Nv; v++)
Pow[ th]+=CplAbs(&pt r i n [ th ] [ rg ] [ v ] ) ;

}

7.1 Matching Size Constraints

It is possible to perform symbolic tiling [12]. From the number of PE in Terapix,
we know the first loop is tiled by a factor of 128. The second tiling parameter is
given by the solution to hardware constraints. Let N ∈ N be the unknown and

the tiling matrix

(

128 0
0 N

)

. We must enforce the outer loop trip count to be

a multiple of the number of PE and perform loop expansion, as in code 1.4 the
new loop upper bound is given by ⌈ x

N
⌉ × N that is, without the ceil operator,

x+N−1
N

×N , where x is the loop trip count and N is the tiling parameter.

Listing 1.4: Average power expanded

for ( th = 0 ; th <= 127 ; th += 1)
for ( rg = 0 ; rg <= N∗ ( (N+12)/N)−1; rg += 1)
for ( v = 0 ; v <= Nv−1; v += 1)
Pow[ th ] += CplAbs(&pt r i n [ th ] [ rg ] [ v ] ) ;

Note that in this example, interprocedural constant propagation have sub-
stituted constant values 13 to symbolic values for Nrg.

We can now apply symbolic tiling with the insurance that all PE are always
active:

Thanks to loop expansion, we have a perfect tiling, while we could have had
an imperfect one. Note how we rely on c99 feature to change array bound. The
computation of regions for the loop statement iterating over the PEs gives us
code 1.6



Listing 1.5: Average power tiled

for ( tht = 0 ; tht <= 127 ; tht += 128)
for ( rg t = 0 ; rg t <= N∗ ( (N+12)/N)−1; rg t += N)
for ( th = tht ; th <= MIN( tht+128 , 127) ; th += 1)
for ( rg = rgt ; rg <= MIN( rgt+N, N∗ ( (N+12)/N)−1) ; rg += 1)
for ( v = 0 ; v <= Nv−1; v += 1)
Pow[ th ] += CplAbs(&pt r i n [ th ] [ rg ] [ v ] ) ;

Listing 1.6: Regions analysis after tiling

// <Pow[PHI1]−R−MAY−{PHI1<=127, th t<=PHI1 , 0<=tht , th t <=127}>
// <Pow[PHI1]−W−MAY−{PHI1<=127, th t<=PHI1 , 0<=tht , th t <=127}>
// <p t r i n [ PHI1 ] [ PHI2 ] [ PHI3 ] [ . im]−R−MAY−{PHI1<=127, th t<=PHI1 ,

PHI2<=N+rgt , rg t<=PHI2 , 0<=PHI3 , PHI3+1<=Nv . . .}>
// <p t r i n [ PHI1 ] [ PHI2 ] [ PHI3 ] [ . re ]−R−MAY−{PHI1<=127, th t<=PHI1 ,

PHI2<=N+rgt , rg t<=PHI2 , 0<=PHI3 , PHI3+1<=Nv . . .}>
for ( th = tht ; th <= MIN( tht+128 , 127) ; th += 1)
for ( rg = rgt ; rg <= MIN( rgt+N, N∗ ( (N+12)/N)−1) ; rg += 1)
for ( v = 0 ; v <= Nv−1; v += 1)
Pow[ th ] += CplAbs(&pt r i n [ th ] [ rg ] [ v ] ) ;

From which we compute memory usage and find the volume polynomial:

V (tht,Nv) = 4×(128−tht)+4×(((128−tht)×Nv)×N+((128−tht)×Nv))−214

Which has a rational solution N = 128×Nv−((Nv+1)×tht+3968)
Nv×tht−128×Nv

Because the
polynomial is of degree 1 and tends toward +∞, taking the ceil of previous
formula is a satisfying solution and we can now substitute it to the symbolic
value of N and perform transfer generation.

7.2 Memory Transfer Generation

Size constraints are met and we generate data transfers between the loop over
the PEs and the remaining of the code. We use statement isolation to do so.
From the computed regions, we generate temporary arrays that will represent
the isolated memory and load - store loops that will transfer data. So after
statement isolation, we get the code in code 1.7: Last step is to perform the
separation between host code and accelerator code.

7.3 Separate Host and Accelerator Code

Applying outlining as exposed in Section 6 results in code 1.8: This example
demonstrates that, unlike traditional outliners, our version takes advantage of
several features from C language: dependent types from C99 and pointer to array
sections are used.



Listing 1.7: Average power after statement isolation

for ( rg t = 0 ; rg t <= N∗ ( (N+12)/N)−1; rg t += N) {
//PIPS genera ted v a r i a b l e
f loat Pow0[− tht +127+1];
//PIPS genera ted v a r i a b l e
Cp l f l o a t p t r in0 [− tht +127+1][N+1] [Nv ] ;
/∗ t r a n s f e r loop genera ted by PIPS from p t r i n to p t r in0 ∗/
for ( i 2 = 1 ; i 2 <= Nv; i 2 += 1)
for ( i 3 = 1 ; i 3 <= 1+N; i 3 += 1)
for ( i 4 = 1 ; i 4 <= −(−128+128∗ tht ) +128; i 4 += 1)
pt r in0 [−1+ i4 ][−1+ i3 ][−1+ i2 ] = pt r i n [−128+128∗ tht+−1+i4 ] [

r g t+−1+i3 ][−1+ i2 ] ;
/∗ t r a n s f e r loop genera ted by PIPS from Pow to Pow0 ∗/
for ( i 0 = 1 ; i 0 <= −(−128+128∗ tht ) +128; i 0 += 1)
Pow0[−1+ i0 ] = Pow[−128+128∗ tht+−1+i0 ] ;

/∗ r e a l computation ∗/
for ( th = 1 ; th <= MIN(−128+128∗ tht+128 , 127)−(−128+128∗ tht )

+1; th += 1)
for ( rg = 1 ; rg <= MIN( rgt+N, N∗ ( (N+12)/N)−1)−rg t +1; rg += 1)
for ( v = 1 ; v <= Nv; v += 1)
Pow0[−1+th+−128+128∗tht−(−128+128∗ tht ) ] += CplAbs(&pt r in0

[−1+th+−128+128∗tht−(−128+128∗ tht ) ][−1+ rg+rgt−rg t ][−1+
v−0]) ;

/∗ t r a n s f e r loop genera ted by PIPS from Pow0 to Pow ∗/
for ( i 1 = 1 ; i 1 <= −(−128+128∗ tht ) +128; i 1 += 1)
Pow[−128+128∗ tht+−1+i1 ] = Pow0[−1+ i1 ] ;

}

8 Conclusion

This paper presents a generic source-to-source code transformation algorithm
that can be used to meet the hardware constraints generally found in simd
accelerators [20].

– statement isolation generates data transfers from convex array regions,
– loop expansion offers an efficient alternative to loop peeling,
– outlining separates host and accelerator code,

Throughout this paper, inter-procedural convex array regions are used as an
intuitive and powerful abstraction to analyze code behavior and memory foot-
print. The approach is demonstrated on an unusual running example, involving
reductions, symbolic bounds structure fields and function call, showing the im-
pact of an accurate analysis in the presence of complex constructs.

We are currently working on specializing our model for CUDA code gener-
ation, taking into account complex memory hierarchy. A limitation of the ap-
proach is that we use a synchronous model for data transfers. This fails to model



Listing 1.8: Code split in three functions

/∗ c a l l to k e rne l ∗/
work 0 (N, Nv, MIN(N+rgt , N∗ ( (N+12)/N)−1)−rg t +1, Pow0 , p t r in0 ) ;
/∗ . . . ∗/
void work 0 ( int N, int Nv, int I 3 , f loat Pow0 [ 1 2 8 ] , Cp l f l o a t

p t r in0 [ 1 2 8 ] [N+1] [Nv ] ) {
int rg , th , v ;
for ( th = 1 ; th <= 128 ; th += 1)
work 0 kerne l (N, Nv, I 3 , &Pow0[−1+th ] , &pt r in0 [−1+th ] ) ;

}
void work 0 kerne l ( int N, int Nv, int I 3 , f loat ∗Pow00 ,

Cp l f l o a t (∗ pt r in00 ) [N+1] [Nv ] ) {
int rg , v ;
for ( rg = 1 ; rg <= I 3 ; rg += 1)
for ( v = 1 ; v <= Nv; v += 1)
∗Pow00 += CplAbs (&((∗ pt r in00 ) [ rg −1]) [ v−1]) ;

}

important optimizations such as double buffering. Memory footprint and data
transfers generations needs some extensions to take care of it.
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