A constrained-optimization methodology for the detection phase in contact mechanics simulations

Abstract : The detection phase in computational contact mechanics can be subdivided into a global search and a local detection. When potential contact is detected by the former, a rigorous local detection determines which surface elements come or may come in contact in the current increment. We first introduce a rigorous definition of the closest point for non-differentiable lower-dimensional manifolds. We then simplify the detection by formulating an optimization problem subject to inequality constraints. The formulation is then solved using different techniques from the field of mathematical optimization, for both linear and quadratic finite element meshes. The resulting general and robust detection scheme is tested on a set of problems and compared with other techniques commonly used in computational geometry.
Type de document :
Article dans une revue
International Journal for Numerical Methods in Engineering, Wiley, 2013, 96, pp.323-338. 〈10.1002/nme.4561〉
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00905452
Contributeur : Odile Adam <>
Soumis le : lundi 18 novembre 2013 - 12:10:23
Dernière modification le : mardi 27 mars 2018 - 16:06:14

Lien texte intégral

Identifiants

Collections

Citation

Alejandro M. Aragon, Vladislav Yastrebov, Jean-François Molinari. A constrained-optimization methodology for the detection phase in contact mechanics simulations. International Journal for Numerical Methods in Engineering, Wiley, 2013, 96, pp.323-338. 〈10.1002/nme.4561〉. 〈hal-00905452〉

Partager

Métriques

Consultations de la notice

149