A. Aw and M. Rascle, Resurrection of "Second Order" Models of Traffic Flow, SIAM Journal on Applied Mathematics, vol.60, issue.3, pp.916-938, 2000.
DOI : 10.1137/S0036139997332099

M. K. Banda, M. Herty, and A. Klar, Gas flow in pipeline networks, Networks and Heterogeneous Media, vol.1, issue.1, pp.41-56, 2006.
DOI : 10.3934/nhm.2006.1.41

J. Coron, On the Null Asymptotic Stabilization of the Two-Dimensional Incompressible Euler Equations in a Simply Connected Domain, SIAM Journal on Control and Optimization, vol.37, issue.6, pp.1874-1896, 1999.
DOI : 10.1137/S036301299834140X

J. Coron and B. , Andréa-Novel, and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, pp.52-54, 2007.

J. De-halleux, C. Prieur, J. Coron, and B. , Andréa-Novel, and G. Bastin, Boundary feedback control in networks of open channels, Automatica J. IFAC, pp.39-1365, 2003.

M. Garavello and B. Piccoli, Traffic Flow on a Road Network Using the Aw???Rascle Model, Communications in Partial Differential Equations, vol.4, issue.2, pp.31-243, 2006.
DOI : 10.1080/03605300500358053

J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasilinear wave equation, Journal of Differential Equations, vol.52, issue.1, pp.66-75, 1984.
DOI : 10.1016/0022-0396(84)90135-9

J. K. Hale and S. M. , Introduction to Functional-Differential Equations, Appl. Math. Sci, vol.99, 1993.
DOI : 10.1007/978-1-4612-4342-7

J. K. Hale and S. M. , Strong stabilization of neutral functional differential equations, IMA Journal of Mathematical Control and Information, vol.19, issue.1 and 2, pp.5-23, 2002.
DOI : 10.1093/imamci/19.1_and_2.5

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Archive for Rational Mechanics and Analysis, vol.168, issue.3, pp.181-205, 1975.
DOI : 10.1007/BF00280740

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conf. Ser, Appl. Math, vol.11, 1973.

T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, 1985.
URL : https://hal.archives-ouvertes.fr/inria-00076486

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci, vol.53, 1984.
DOI : 10.1007/978-1-4612-1116-7

T. H. Qin, Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems, Chinese Ann, Chinese summary appears in Chinese Ann, pp.289-298, 1985.

W. Rudin, Functional Analysis, McGraw?Hill Series in Higher Mathematics, 1973.

D. Serre, Systèmes de Lois de Conservation, 1996.

M. Slemrod, Boundary feedback stabilization for a quasi-linear wave equation, Lecture Notes in Control and Inform. Sci, vol.54, pp.221-237, 1983.
DOI : 10.1007/BFb0043951

A. Tchousso, T. Besson, and C. Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method, ESAIM: Control, Optimisation and Calculus of Variations, vol.15, issue.2
DOI : 10.1051/cocv:2008033

C. Xu and G. Sallet, Exponential Stability and Transfer Functions of Processes Governed by Symmetric Hyperbolic Systems, ESAIM: Control, Optimisation and Calculus of Variations, vol.7, pp.421-442, 2002.
DOI : 10.1051/cocv:2002062

Y. C. Zhao, The boundary value problem for systems of first-order quasilinear hyperbolic equations, Chinese Ann an English summary appears in Chinese Ann Absolute stability of the solutions of differential equations with several lags, Trudy Sem, Math. Ser. A Math. Ser. B Teor. Differencial, vol.7, issue.7, pp.629-643, 1969.