Asymptotic observers for a simplified brass instrument model - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Acta Acustica united with Acustica Année : 2010

Asymptotic observers for a simplified brass instrument model

(1) , (2) , (3)
1
2
3
Brigitte d'Andréa-Novel
Jean-Michel Coron
  • Fonction : Auteur
  • PersonId : 932476

Résumé

In this paper, a simplified model of a brass instrument is introduced. It is composed of a valve (including the mechanics of the lips), a jet (coupled with the valve dynamics), and a straight acoustic pipe excited by the jet, radiating in the air, and with frequency independent losses. This model couples an ordinary differential equation (valve) to a partial differential equation (acoustic pipe) through a static nonlinear function (Bernoulli relation on the jet). In fact, the overall system can be described by a ''so-called'' nonlinear neutral state space representation, the state of which being the position and velocity of the valve aperture and the ingoing wave of pressure at the entrance of the pipe. The measured output is the pressure at the open end of the pipe and the control is the mouth pressure. In this paper, methods of control engineering are applied to recover the state from the input and the measured output, assuming that propagation characteristics and player expression parameters are constant: a nonlinear state observer is built.} The robustness to wrong initial conditions and to noise on the measured output are analyzed.
Fichier principal
Vignette du fichier
Observer.pdf (1.29 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00923627 , version 1 (03-01-2014)

Identifiants

  • HAL Id : hal-00923627 , version 1

Citer

Brigitte d'Andréa-Novel, Jean-Michel Coron, Thomas Hélie. Asymptotic observers for a simplified brass instrument model. Acta Acustica united with Acustica, 2010, 96, pp.733-742. ⟨hal-00923627⟩
286 Consultations
391 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More