Optimized parallel computing for cellular automaton-finite element modeling of solidification grain structures - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Modelling and Simulation in Materials Science and Engineering Année : 2014

Optimized parallel computing for cellular automaton-finite element modeling of solidification grain structures

(1) , (1) , (1)
1
Tommy Carozzani
  • Fonction : Auteur
  • PersonId : 765415
  • IdRef : 168254867
Hugues Digonnet
  • Fonction : Auteur
  • PersonId : 907588

Résumé

A numerical implementation of a three-dimensional (3D) cellular automaton (CA)-finite element (FE) model has been developed for the prediction of solidification grain structures. For the first time, it relies on optimized parallel computation to solve industrial-scale problems (centimeter to meter long) while using a sufficiently small CA grid size to predict representative structures. Several algorithm modifications and strategies to maximize parallel efficiency are introduced. Improvements on a real case simulation are measured and discussed. The CA-FE implementation here is demonstrated using 32 computing units to predict grain structure in a 2.08 m × 0.382 m × 0.382 m ingot involving 4.9 billion cells and 1.6 million grains. These numerical improvements permit tracking of local changes in texture and grain size over real-cast parts while integrating interactions with macrosegregation, heat flow and fluid flow. Full 3D is essential in all these analyses, and can be dealt with successfully using the implementation presented here.
Fichier non déposé

Dates et versions

hal-00933162 , version 1 (20-01-2014)

Identifiants

Citer

Tommy Carozzani, Charles-André Gandin, Hugues Digonnet. Optimized parallel computing for cellular automaton-finite element modeling of solidification grain structures. Modelling and Simulation in Materials Science and Engineering, 2014, 22 (1), pp.Article number 015012. ⟨10.1088/0965-0393/22/1/015012⟩. ⟨hal-00933162⟩
152 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More