Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation

Abstract : In this work, we combine the use of the Streamline Upwind Petrov-Galerkin (SUPG) method with anisotropic mesh adaptation to obtain accurate solutions for steady convection-dominated problems. The anisotropic mesh adaptation framework is introduced in the context of a local mesh generation method based on a mesh topology modification and a minimal volume principle. A new route to get a metric field directly at the node of the mesh is highlighted using the length distribution tensor and an edge based error analysis. An a posteriori error estimation is applied to the stabilized finite element solution detecting automatically all sharp gradients, inner and boundary layers. The numerical examples show that the use of the anisotropic mesh adaptation algorithm allows the recovery of the global convergence order of the numerical schemes while producing accurate and oscillation free numerical solutions.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00960089
Contributeur : Magalie Prudon <>
Soumis le : lundi 17 mars 2014 - 15:47:14
Dernière modification le : jeudi 24 septembre 2020 - 17:22:54

Identifiants

Citation

Elie Hachem, Ghina Jannoun, Jérémy Veysset, Thierry Coupez. On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation. Applied Mathematics and Computation, Elsevier, 2014, 232, pp.581-594. ⟨10.1016/j.amc.2013.12.166⟩. ⟨hal-00960089⟩

Partager

Métriques

Consultations de la notice

359