Skip to Main content Skip to Navigation
Conference papers

Numerical simulation of AM1 microstructure

Abstract : A modelling approach is developed for the description of microstructure formation in the industrial AM1 Ni-base superalloy. Solidification and homogenization simulations are first carried out using a microsegregation model, before using the local compositions as an input for precipitation calculations, in order to characterize the influence of segregation on precipitation. First, the precipitation model was validated by comparing simulated and measured evolutions of the average precipitate radius during isothermal heat treatments at 1100 °C and 1210 °C. The chained microsegregation and precipitation simulations indicate that the global sequences of precipitation events remains are qualitatively the same at the different locations in the microstructure, but the growth and dissolution kinetics are strongly influenced by the local compositions. Local supersaturations have a larger effect on the average radius of the precipitates than certain stages of the precipitation heat treatment.
Document type :
Conference papers
Complete list of metadata

https://hal-mines-paristech.archives-ouvertes.fr/hal-01064808
Contributor : Magalie Prudon <>
Submitted on : Wednesday, September 17, 2014 - 11:27:32 AM
Last modification on : Sunday, January 3, 2021 - 4:46:02 PM

Links full text

Identifiers

Citation

Luc Rougier, Alain Jacot, Charles-André Gandin, Paolo Di Napoli, Damien Ponsen, et al.. Numerical simulation of AM1 microstructure. 2nd European Symposium on Superalloys and their Applications, May 2014, Giens, France. pp.Article number 11003, ⟨10.1051/matecconf/20141411003⟩. ⟨hal-01064808⟩

Share

Metrics

Record views

274