R. Bray, C. Leonard, and P. Salo, Vascular physiology and long-term healing of partial ligament tears, Journal of Orthopaedic Research, vol.4, issue.5, pp.984-993, 2002.
DOI : 10.1016/S0736-0266(02)00012-8

S. Woo, S. Abramowitch, R. Kilger, and R. Liang, Biomechanics of knee ligaments: injury, healing, and repair, Journal of Biomechanics, vol.39, issue.1, pp.1-20, 2006.
DOI : 10.1016/j.jbiomech.2004.10.025

R. Mascarenhas and P. Macdonald, Anterior cruciate ligament reconstruction: a look at prosthetics--past, present and possible future, Mcgill J Med, vol.11, pp.29-3718523530, 2008.

M. Guidoin, Y. Marois, J. Bejui, N. Poddevin, M. King et al., Analysis of retrieved polymer fiber based replacements for the ACL, Biomaterials, vol.21, issue.23, pp.2461-74, 2000.
DOI : 10.1016/S0142-9612(00)00114-9

L. Larkin, S. Calve, T. Kostrominova, and E. Arruda, Structure and functional evaluation of tendonskeletal muscle constructs engineered in vitro, Tissue Eng, vol.1212, pp.3149-583149, 2006.

R. Hou, G. Zhang, G. Du, D. Zhan, Y. Cong et al., Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation, Colloids and Surfaces B: Biointerfaces, vol.103, pp.318-343, 2013.
DOI : 10.1016/j.colsurfb.2012.10.067

T. Hayami, K. Matsumura, M. Kusunoki, H. Nishikawa, and S. Hontsu, Imparting cell adhesion to poly(vinyl alcohol) hydrogel by coating with hydroxyapatite thin film, Materials Letters, vol.61, issue.13, pp.2667-70, 2007.
DOI : 10.1016/j.matlet.2006.10.019

K. Matsumura, T. Hayami, S. Hyon, and S. Tsutsumi, Control of proliferation and differentiation of osteoblasts on apatite-coated poly(vinyl alcohol) hydrogel as an artificial articular cartilage material, Journal of Biomedical Materials Research Part A, vol.36, pp.1225-1257, 2010.
DOI : 10.1002/jbm.a.32448

F. Baxter, J. Bach, F. Detrez, S. Cantournet, L. Corté et al., Augmentation of Bone Tunnel Healing in Anterior Cruciate Ligament Grafts: Application of Calcium Phosphates and Other Materials, Journal of Tissue Engineering, vol.64, issue.3, p.712370, 2010.
DOI : 10.1007/s00264-010-0963-2

URL : https://hal.archives-ouvertes.fr/hal-00570311

W. Pan, Z. Cao, D. Li, and M. Zhang, Evaluation of the potential application of three different biomaterials combined with bone morphological proteins for enhancing tendon???bone integration, Injury, vol.44, issue.4, pp.550-557, 2013.
DOI : 10.1016/j.injury.2012.09.019

H. Li, Y. Wu, Y. Ge, J. Jiang, K. Gao et al., Composite coating of 58S bioglass and hydroxyapatite on a poly (ethylene terepthalate) artificial ligament graft for the graft osseointegration in a bone tunnel, Applied Surface Science, vol.257, issue.22, pp.9371-9377, 2011.
DOI : 10.1016/j.apsusc.2011.05.110

M. Hirota, T. Hayakawa, M. Yoshinari, A. Ametani, T. Shima et al., Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation, International Journal of Oral and Maxillofacial Surgery, vol.41, issue.10, pp.1304-1313, 2012.
DOI : 10.1016/j.ijom.2011.12.035

M. Wang, Y. Li, J. Wu, F. Xu, Y. Zuo et al., In vitro andin vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite, Journal of Biomedical Materials Research Part A, vol.12, issue.332, pp.418-444, 2008.
DOI : 10.1002/jbm.a.31585

J. Kopecek, Hydrogel biomaterials: A smart future?, Biomaterials, vol.28, issue.34, pp.5185-92, 2007.
DOI : 10.1016/j.biomaterials.2007.07.044

M. Kobayashi, Y. Chang, and M. Oka, A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus, Biomaterials, vol.26, issue.16, 2005.
DOI : 10.1016/j.biomaterials.2004.08.028

S. Maher, S. Doty, P. Tor-zi-l-li, S. Thornton, A. M. Lowman et al., Nondegradable hydrogels for the treatment of focal cartilage defects, Journal of Biomedical Materials Research Part A, vol.377, issue.1, pp.145-55, 2007.
DOI : 10.1002/jbm.a.31255

S. Poursamar, M. Azami, and M. Mozafari, Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique, Colloids and Surfaces B: Biointerfaces, vol.84, issue.2, pp.310-316, 2011.
DOI : 10.1016/j.colsurfb.2011.01.015

A. Sinha and A. Guha, Biomimetic patterning of polymer hydrogels with hydroxyapatite nanoparticles, Materials Science and Engineering: C, vol.29, issue.4, pp.1330-1333, 2009.
DOI : 10.1016/j.msec.2008.10.024

Y. Suetsugu, D. Walsh, J. Tanaka, and S. Mann, Hydroxyapatite pattern formation in PVA gels, Journal of Materials Science, vol.9, issue.21
DOI : 10.1007/s10853-009-3815-y

S. Tadavarthy, J. Moller, and K. Amplatz, POLYVINYL ALCOHOL (IVALON)???A NEW EMBOLIC MATERIAL, American Journal of Roentgenology, vol.125, issue.3, pp.609-625, 1975.
DOI : 10.2214/ajr.125.3.609

C. Hassan and N. Peppas, Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods, Adv Polym Sci, vol.153, pp.38-65, 2000.
DOI : 10.1007/3-540-46414-X_2

M. Baker, S. Walsh, Z. Schwartz, and B. Boyan, A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.108, issue.Suppl II, pp.1451-1458, 2012.
DOI : 10.1002/jbm.b.32694

R. Sathe and D. Ku, Flexible Prosthetic Vein Valve, Journal of Medical Devices, vol.1, issue.2, pp.105-117, 2007.
DOI : 10.1115/1.2736393

S. Bertazzo, W. Zambuzzi, D. Campos, T. Ogeda, C. Ferreira et al., Hydroxyapatite surface solubility and effect on cell adhesion, Colloids and Surfaces B: Biointerfaces, vol.78, issue.2, pp.177-84, 2010.
DOI : 10.1016/j.colsurfb.2010.02.027

M. Dalby, D. Silvio, L. Harper, E. Bonfield, and W. , Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response, Biomaterials, vol.23, issue.2, pp.569-76, 2002.
DOI : 10.1016/S0142-9612(01)00139-9

M. Draenert, A. Draenert, and K. Draenert, Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics, Microscopy Research and Technique, vol.3, issue.4, pp.370-80, 2013.
DOI : 10.1002/jemt.22176

J. Bach, F. Detrez, M. Cherkaoui, S. Cantournet, D. Ku et al., Hydrogel fibers for ACL prosthesis: Design and mechanical evaluation of PVA and PVA/UHMWPE fiber constructs, Journal of Biomechanics, vol.46, issue.8, pp.1463-70, 2013.
DOI : 10.1016/j.jbiomech.2013.02.020

URL : https://hal.archives-ouvertes.fr/hal-00821932

C. Hassan and N. Peppas, Cellular PVA hydrogels produced by freeze/thawing, 14<2075::AID- A PP11>3.0.CO, pp.2075-91097, 2000.
DOI : 10.1002/(SICI)1097-4628(20000628)76:14<2075::AID-APP11>3.0.CO;2-V

C. Hassan, N. Peppas, A. Grandjean-laquerriere, E. Jallot, M. Nardin et al., Structure and Morphology of Freeze/Thawed PVA Hydrogels Effect of the physicochemical characteristics of hydroxyapatite on the cell behavior, Macromolecules ITBM-RBM, vol.33, issue.26, pp.2472-9200, 2000.

P. Laquerriere, A. Grandjean-laquerriere, E. Jallot, G. Balossier, P. Frayssinet et al., Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro, Biomaterials, vol.24, issue.16, pp.2739-2786, 2003.
DOI : 10.1016/S0142-9612(03)00089-9

URL : https://hal.archives-ouvertes.fr/in2p3-00012865

P. Laquerriere, A. Grandjean-laquerriere, L. Kilian, A. Beorchia, M. Guenounou et al., Influence of hydroxyapatite particle characteristics on the [K]/[Na] ratio: a human monocytes in vitro study, Colloids and Surfaces B: Biointerfaces, vol.33, issue.1, pp.39-44, 2004.
DOI : 10.1016/j.colsurfb.2003.08.012

URL : https://hal.archives-ouvertes.fr/in2p3-00020456

O. Malard, J. Bouler, J. Guicheux, D. Heymann, P. Pilet et al., Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: Preliminary in vitro and in vivo study, 1<103::AID-JBM12>3.0.CO, pp.103-111097, 1999.
DOI : 10.1002/(SICI)1097-4636(199907)46:1<103::AID-JBM12>3.3.CO;2-Q

D. Megias-alguacil and L. Gauckler, Accuracy of the toroidal approximation for the calculus of concave and convex liquid bridges between particles, Granular Matter, vol.3, issue.4, pp.487-92, 2011.
DOI : 10.1007/s10035-011-0260-9

N. Mitarai and H. Nakanishi, Simple model for wet granular materials with liquid clusters, EPL (Europhysics Letters), vol.88, issue.6, p.6, 2009.
DOI : 10.1209/0295-5075/88/64001

L. Landau and L. Levich, Dragging of a Liquid by a Moving Plate, Acta Physicochim. USSR, vol.17, pp.42-54, 1942.
DOI : 10.1016/B978-0-08-092523-3.50016-2

E. Morscher, A. Hefti, and U. Aebi, Severe osteolysis after third-body wear due to hydroxyapatite particles from acetabular cup coating, The Journal of Bone and Joint Surgery, vol.80, issue.2, pp.267-729546458, 1998.
DOI : 10.1302/0301-620X.80B2.8316

S. Yamamoto, A. Saito, K. Nagasaka, S. Sugimoto, K. Mizuno et al., The strain-rate dependence of mechanical properties of rabbit knee ligaments, Proceedings of the 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV) 2003

D. Butler, M. Kay, and D. Stouffer, Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments, Journal of Biomechanics, vol.19, issue.6, pp.425-320021, 1986.
DOI : 10.1016/0021-9290(86)90019-9

F. Noyes and E. Grood, The strength of the anterior cruciate ligament in humans and Rhesus monkeys, The Journal of Bone & Joint Surgery, vol.58, issue.8, pp.1074-821002748, 1976.
DOI : 10.2106/00004623-197658080-00006

Y. Takeda, J. Xerogeanes, G. Livesay, F. Fu, and S. Woo, Biomechanical function of the human anterior cruciate ligament, Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol.10, issue.2, pp.140-147, 1994.
DOI : 10.1016/S0749-8063(05)80081-7

R. Surmenev, M. Surmeneva, and A. Ivanova, Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis ??? A review, Acta Biomaterialia, vol.10, issue.2, pp.557-79, 2014.
DOI : 10.1016/j.actbio.2013.10.036

J. Faig-martía and F. Gil-murb, Hydroxyapatite coatings in prosthetic joints, Rev Esp Cir Ortop Traumatol, vol.52, pp.113-133, 2008.

L. Nie, D. Chen, J. Suo, P. Zou, S. Feng et al., Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications, Colloids and Surfaces B: Biointerfaces, vol.100, pp.169-76, 2012.
DOI : 10.1016/j.colsurfb.2012.04.046

W. Chang, X. Mu, X. Zhu, G. Ma, C. Li et al., Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers, Materials Science and Engineering: C, vol.33, issue.7, pp.4369-76, 2013.
DOI : 10.1016/j.msec.2013.06.023

H. Costa, A. Mansur, E. Barbosa-stancioli, M. Pereira, and H. Mansur, Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA, Journal of Materials Science, vol.26, issue.2, pp.510-534, 2008.
DOI : 10.1007/s10853-007-1849-6

G. Wu, B. Su, W. Zhang, and C. Wang, In vitro behaviors of hydroxyapatite reinforced polyvinyl alcohol hydrogel composite, Materials Chemistry and Physics, vol.107, issue.2-3, pp.364-373, 2008.
DOI : 10.1016/j.matchemphys.2007.07.028