E. Carmona, M. Rincón, J. García-feijoó, M. Casa, and J. , Identification of the optic nerve head with genetic algorithms, Artificial Intelligence in Medicine, vol.43, issue.3, pp.243-59, 2008.
DOI : 10.1016/j.artmed.2008.04.005

E. Decencière, G. Cazuguel, X. Zhang, G. Thibault, J. Klein et al., TeleOphta: Machine learning and image processing methods for teleophthalmology, IRBM, vol.34, issue.2, pp.196-203, 2013.
DOI : 10.1016/j.irbm.2013.01.010

L. Giancardo, F. Meriaudeau, T. Karnowski, Y. Li, S. Garg et al., Exudate-based diabetic macular edema detection in fundus images using publicly available datasets, Medical Image Analysis, vol.16, issue.1, pp.216-242, 2012.
DOI : 10.1016/j.media.2011.07.004

URL : https://hal.archives-ouvertes.fr/hal-00639756

A. Hoover, V. Kouznetsova, and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical Imaging, vol.19, issue.3, pp.203-213, 2000.
DOI : 10.1109/42.845178

M. Niemeijer, B. Van-ginneken, M. Cree, A. Mizutani, G. Quellec et al., Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs, IEEE Transactions on Medical Imaging, vol.29, issue.1, pp.185-95, 2010.
DOI : 10.1109/TMI.2009.2033909

URL : https://hal.archives-ouvertes.fr/hal-00473901

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. Van-ginneken, Ridge-Based Vessel Segmentation in Color Images of the Retina, IEEE Transactions on Medical Imaging, vol.23, issue.4, pp.501-510, 2004.
DOI : 10.1109/TMI.2004.825627