Skip to Main content Skip to Navigation
Journal articles

The contact of elastic regular wavy surfaces revisited

Abstract : We revisit the classic problem of an elastic solid with a two-dimensional wavy surface squeezed against an elastic flat half-space from infinitesimal to full contact. Through extensive numerical calculations and analytic derivations, we discover previously overlooked transition regimes. These are seen in particular in the evolution with applied load of the contact area and perimeter, the mean pressure and the probability density of contact pressure. These transitions are correlated with the contact area shape, which is affected by long range elastic interactions. Our analysis has implications for general random rough surfaces, as similar local transitions occur continuously at detached areas or coalescing contact zones. We show that the probability density of null contact pressures is nonzero at full contact. This might suggest revisiting the conditions necessary for applying Persson’s model at partial contacts and guide the comparisons with numerical simulations. We also address the evaluation of the contact perimeter for discrete geometries and the applicability of Westergaard’s solution for three-dimensional geometries.
Complete list of metadata
Contributor : Bibliothèque UMR7633 Connect in order to contact the contributor
Submitted on : Monday, November 17, 2014 - 3:08:14 PM
Last modification on : Wednesday, November 17, 2021 - 12:28:16 PM

Links full text



Vladislav Yastrebov, Guillaume Anciaux, Jean-François Molinari. The contact of elastic regular wavy surfaces revisited. Tribology Letters, Springer Verlag, 2014, 56, pp.171-183. ⟨10.1007/s11249-014-0395-z⟩. ⟨hal-01083586⟩



Record views