Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization

Abstract : In this paper, we present our work on clustering and prediction of temporal evolution of global congestion configurations in a large-scale urban transportation network. Instead of looking into temporal variations of traffic flow states of individual links, we focus on temporal evolution of the complete spatial configuration of congestions over the network. In our work, we pursue to describe the typical temporal patterns of the global traffic states and achieve long-term prediction of the large-scale traffic evolution in a unified data-mining framework. To this end, we formulate this joint task using regularized Non-negative Tensor Factorization, which has been shown to be a useful analysis tool for spatio-temporal data sequences. Clustering and prediction are performed based on the compact tensor factorization results. The validity of the proposed spatio-temporal traffic data analysis method is shown on experiments using simulated realistic traffic data.
Type de document :
Article dans une revue
International Journal of Intelligent Transportation Systems Research, Springer Verlag, 2016, 14 (1), pp.36-49. 〈10.1007/s13177-014-0099-7〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01085971
Contributeur : Fabien Moutarde <>
Soumis le : vendredi 28 novembre 2014 - 17:18:29
Dernière modification le : lundi 12 novembre 2018 - 11:04:01
Document(s) archivé(s) le : vendredi 14 avril 2017 - 20:10:50

Fichier

trafficDynamics-NTF_IJITS2014....
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Yufei Han, Fabien Moutarde. Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization. International Journal of Intelligent Transportation Systems Research, Springer Verlag, 2016, 14 (1), pp.36-49. 〈10.1007/s13177-014-0099-7〉. 〈hal-01085971〉

Partager

Métriques

Consultations de la notice

546

Téléchargements de fichiers

745