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The biphasic character of semi-crystalline polymer was modeled by the multi-mechanism (MM) consti-
tutive relationships. Here, a comparative study between continuum damage mechanics (CDM) theory and
Mechanics of Porous Media (MPM) approach, both related to the MM model, is performed. This compar-
ison is based upon creep tests conducted on notched round bars made of PA6 semi-crystalline polymer to
enhance a multiaxial stress state. For CDM model, the damage is classically described by a unique overall
variable whereas the average of the local porosity at each phase level was considered for the MPM model.
For each model, the optimization of the set of materiales parameters was carried out by combining the
overall behavior of notched specimens subjected to creep loading, as well as the local information such
as the distribution of porosity. It is found that both CDM and MPM models, each coupled with MM model
correctly describe the overall creep behavior of the notched specimen if two damage variables are used.

Moreover the MM/MPM model is more relevant for predicting porosity distribution.

2014 Elsevier Ltd. All rights reserved.

1. Introduction

The frequent use of polymers in engineering components
requires reliable constitutive models to describe both their
mechanical and damage behaviors. Among these materials,
semi-crystalline polymers (SCP) exhibit high non linear mechanical
response caused by their structural changes that necessitates the
development of accurate constitutive models. These models
should be based on deformation and damage mechanisms to ana-
lyze inelastic behaviors of structures made of SCP. During the two
last decades, extensive research was accomplished on the investi-
gation of the behavior of SCP materials. These works are of two
kinds (i) constitutive models (ii) durability (damage mechanics
and failure).

The large deformation level, the strain rate effect, the in"uence of
the crystallinity ratio are factors that in"uence the SCP behavior,
see for instance Danielsson et al. (2002), Drozdov (2010), Epee
et al. (2011), Drozdov (2013), Abu Al-Rub et al. (2014)

In addition to the factors enumerated above, SCP might contain
initial voids that grow and coalesce during deformation and
should be considered. Therefore, SCP are assumed to be porous
media containing micro-voids in the undeformed state
considered as damage. They are at the origin of failure by their
coalescence during mechanical loading ( Laiarinandrasana et al.,
2010; Boisot et al., 2011 ). The durability of the SCP was in the
focus of a second class of researches. The durability prediction
requires a better understanding of the failure mode of struc-
tures made of SCP, see for instance Cotterell et al. (2007),
Wang et al. (2010), Detrez et al. (2011), Frontini et al. (2012),

Examples of studies devoted to analyze SCP stress...strain
response includes the works of Dusunceli and Colak (2007),
Drozdov and Christiansen (2008), Baudet et al. (2009), Bles et al.
(2009), Drozdov (2010), Epee et al. (2011), Ricard et al. (2014) .

Corresponding author.
E-mail address: kacemsai@yahoo.fr (K. Sai).

http://dx.doi.org/10.1016/j.ijsolstr.2014.10.031
0020-7683/ 2014 Elsevier Ltd. All rights reserved.

Leevers (2012), Ricard et al. (2014), Abu Al-Rub et al. (2014) .

Two broad approaches have emerged in the literature to predict
failure of materials: continuum damage mechanics (CDM) theory
and the Mechanics of Porous Media (MPM) concept. The “rst class
of model is known to provide good predictions under shear
tensile loading condition where typically low stress triaxialities
are encountered. Whereas, according to Brunig et al. (2013) , for
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instance, porous plasticity model type is more appropriate at high
stress triaxialities.

CDM theory describes the effects of growth on macroscopic
variables. This approach has been extensively applied to metal-
lic materials ( Lemaitre and Desmorat, 2001; Hambli, 2001;
Lemaitre et al., 2000; Chaboche et al., 2006; Saanouni, 2008;
Boudifa et al., 2009; Ayoub et al., 2011 ). In the CDM approach,
damage is modeled at the macroscopic level by means of
thermodynamic variable that leads to elastic moduli degradation
and may also affect the plastic behavior. This approach can be
extended in order to include volumetric plastic strains that play
important roles in the ductile fracture under high triaxialities
(Brunig et al., 2013 ).

MPM models such as that of Gurson...Tvergaard...Needleman
(GTN), initiated by Gurson (1977) are based on the assump-
tion that damage occurs at microstructural level due to
micro-void nucleation, growth and coalescence. Void growth

is linked to the plastic strain and the stress triaxiality level.
This approach was adopted for instance by Pardoen and
Hutchinson (2000), Besson and Guillemer-Neel (2003),
Monchiet et al. (2008), Sai et al. (2011), Oral et al. (2012),
Ognedal et al. (2014) . Improvements was proposed in order
to take into account the effects of low triaxiality during shear-

ing (Nahshon and Hutchinson, 2008; Nielsen and Tvergaard,
2009; Tvergaard and Nielsen, 2010 ). Some dif‘culties may
also be encountered by the porous plasticity models that are
not able to correctly predict the crack propagation path
(Hambli, 2001 ). Another limitation of the model is that
nucleation of the voids does not occur under compression
(Nahshon and Xue, 2009).

Comparative studies between the GTN porous plasticity models
and the CDM theories have been performed for instance by Hambli
(2001), Mkaddem et al. (2004), Pirondi et al. (2006), Li et al. (2011),
Malcher et al. (2012), Andrade et al. (2014) .

The present work is a continuation of previous studies devoted
to propose reliable constitutive models that consider both mechan-
ical and damage behavior of Polyamide 6 (PA6) and Polyamide 11
(PA11) subjected to tensile and creep loadings. These models belong
to two distinct approaches (i) the so-called multi-mechanism
(MM) formalism ( Regrain et al., 2009; Regrain et al., 2009; Sai
et al., 2011; Cayzac et al, 2013) (ii) the uni“ed approach
(mono-mechanism) ( Laiarinandrasana et al., 2010). The “rst
category is more appropriate for SCP since it allows the distinction
of the two phases by means of the crystallinity index. Therefore, it
provides local information such as, plastic strains, stresses and
damage in each phase. Only multi-mechanism model will be
then considered in the sequel. The MM formalism that considers
both mechanical and damage behavior of SCP was used to study
the void growth, the creep and tensile behavior and the damage
localization in notched specimens. An attempt is then made here
to enroll the same MM model to GTN and CDM theory.

The novelties in this work are two folds:

Coupling the CDM theory and the MM model: to the authorse

best knowledge this association has never been proposed
before;

For the two MM-associated models, it is proposed to consider

the damage (i) as an intrinsic local variable related to each spe-

ci“c phase, (ii) as a unique overall variable over both phases.

The paper is organized in the following manner: Constitutive
equations of the proposed MM models are detailed in section 2.
To assess their reliability, the two MM models are compared with
experimental data base taken from the works of  Regrain et al.

(2009), Cayzac et al. (2013) in Section 3. A selection strategy is
developed with the aim to choose the more relevant model. A “rst
selection of the models is performed by comparison to creep
behavior of notched specimen in Section 3.1. The local responses
of the remaining models are then analyzed in Section 3.2 to retain
the more appropriate model(s). The local contribution of damage
state at each phase level is critically commented in Section  3.3.

2. Modeling

Since SCP consist of amorphous and crystalline phases, MM
approach is good candidate to describe the polymeric material as
a composite material. Amorphous and crystalline phases are,
respectively, mapped to a “rst mechanism referred to as« a- and a
second mechanism referred to as ¢ ce. The MM approach is intended
here to describe the contribution of the amorphous phase and the
crystalline phase to the inelastic behavior of SCP characterized by
their crystallinity ratio  z.

The use of a “nite strain formulation through updated lagrang-
ian formalism is needed to model large-strain deformation of
polymer. The material behavior is based on Green...Naghdi
transformation of the stress...strain problem into an eeequivalent
material referentialee. This kind of formulation can be applied to
materials with tensorial internal variables without modifying the
local evolution rules ( Ladeveze, 1999). The model is described by:

1 1 T 1 T

LYaEF D1/4E LpL X1/4E L L ap
where F is the deformation gradient, L the rate of deformation, D
the stretch rate and X the rotation rate. The stretch rate tensor is
transported into a local rotated referential following the expression:

e%sR'DR &p

where the rotation tensor
tion of the deformation gradient

R is determined by the polar decomposi-
F ¥ R U. Rand U describe respec-

tively a pure rotation and a pure stretch tensor.

The integrated strain tensor is decomposed into both elastic and
inelastic parts. Thanks to updated lagrangian formulation, consti-
tutive relations can be expressed as in small strain hypothesis.
Therefore, dealing with the elastic strain tensor is equivalent to a
hypoelastic formulation in agreement with a Green...Naghdi stress
rate. The stress measure is here the Cauchy stress I obtained by
using the conjugate stress Swhich results from the material behav-
ior integration:

I Yadet '&PR SR” &Bp

Under the small deformation hypothesis and using the assump-
tion of uniform elasticity, the total strain can be decomposed into
an elastic part and an inelastic one.

ev,ep @ b

The assumption of uniform strain in the semi-crystalline
polymers was also made in the works of Brusselle-Dupend and
Cangémi (2008), Baudet et al. (2009), Shojaei and Li (2013) . An
other group of works considers that each phase has its own elastic
strain ( Bédoui et al., 2004; Zairi et al., 2011 ). The total inelastic
strain is the average of the irreversible deformation of each phase:

@ v,a e p z€ &b

where € and € stand for the inelastic strain in the amorphous

phase and the crystalline phase respectively. Such a decomposition
has already been applied in other works ( Nikolov and Doghri, 2000;
Ahzi et al., 2003; van Dommelen et al., 2003; Sheng et al., 2004;
Colak and Krempl, 2005 ).
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2.1. Background of the undamaged MM model

In the MM approach, each phase is associated to a local stress
tensor calculated from an appropriate stress concentration rule.
For the sake of simplicity and to reduce the number of material
coef‘cients, it is assumed in the present work that the macroscopic
stress is equal to the stress in each phase.

ravarcvar vukK: € &b

This assumption of uniform stress has been successfully used
for MM models in order to simulate the mechanical behavior of
medium density polyethylene ( BenHadj Hamouda et al., 2007)
and more recently for PA6 ( Cayzac et al., 2013). Note that the
difference of stiffness is supported by the strains as shown by
Eqg. (5). Nikolov and Doghri (2000) have proposed earlier a
micro-mechanical model using a static homogenization scheme
for Polyethylene. The two local stresses are involved in two yield
functions /2 and / ¢ de“ning criteria for the amorphous phase
and crystalline phase respectively. The present study is only
devoted to PA6 behavior under monotonic loading, the amorphous
and crystalline criteria write:

8
</®* vvHmp R R

&7b
I° wxp R K

1=2
where X b ¥ % s:s .sisthe deviatoric part of the stress tensor.

The two material parameters R} and R; denote the initial size of the
two elastic domains, whereas R and R characterize the size change
of each yield surface. They are associated to two internal variables
rd and re:

R Y%b,Qur?

ap
R Yb.Q.r¢

Q.; ba; Q. and b, are isotropic hardening parameters linked to
the amorphous phase and to the crystalline phase respectively. To
take into account the rate sensitivity of the PA6, the model is
written here in the viscoplasticity framework by introducing the
material parameters K;; ny; K: and ng:

8 D E,
R Y

D’ ®b
7 ke 1/4{{E"°

The Macauley bracket hi denotes the positive part ( hxi % O if
x 6 0 and x otherwise). According to the normality "ow rule, the
viscoplastic strain rates may be expressed as:

8
2 & vikdn? with na%%ﬁi‘)

alop

S

& vaken® with n°vad oo

The evolution laws of the isotropic hardening variable are given

by:
8

N
-
®

A g

o

alip

—

vkl

2.2. Damage MM model based on GTNes approach

The most popular porous plasticity model proposed originally
by Gurson (1977) is based on the concept of a plastic yield surface
which is function of void volume fraction (or porosity). The

porosity evolution results from the mass conservation principle.
Two MM sub-models can be distinguished:

Since SCP consist of amorphous and crystalline phases, each
phase may be characterized by its own damage variable. The
total porosity is supposed to be the average of the local porosity

at each phase level f 48 zH®p zf® (Sai et al., 2011). The
porosity of the amorphous phase f® and the porosity of the
crystalline phase f° are de“ned as follows:

( fa 1, cavity volume in the amorphous phase
4 volume of the amorphous phase

fC Y, cavity volume in the crystalline phase
volume of the crystalline phase

alzp

The related model will be referred to as «sMMG2fes.

The damage is classically described by a unique overall variable.

Indeed when damage takes place in the SCP, it cannot be
attributed to one speci“c phase. Therefore, an overall damage

variable f may be considered. It also results in a reduction of

the number of damage parameters.

overall cavity volume

Ya -
total volume of the material

al3p

This classic assumption is used in the model referred to as
eosMMG1fee.

2.2.1. MM model coupled with GTN type damage **MMG2fee
The "ow potentials for the two phases are as follows:
R
By g R

R
1° Yarg, T R

</a
aap

The effective size change of the elastic domain of each phase is
affected by the damage level f* and f° respectively. They are

related to two internal variables r2 and r¢ as:
(
1 a a
R vd fcl:baQar 15
R v%dal  f°H.Q.re

The effective stresses I}, and I {, are implicitly founded accord-
ing to Besson and Guillemer-Neel (2003) by the conditions:
8

b 2 a &
$Ga;frap % e b2gificosh S0 1 g P%0
H
2 ¢l
2 eaittreb v ol b 2:f cosh R I
H

alep

The material parameters q3; g3; qf and g5 accounts for interac-
tions (Faleskog et al., 1998). % and f° are respectively functions of
the porosity f* and f°. These two phenomenological functions
account for void coalescence in the amorphous and crystalline
phases.

( a B a a
fay, PPt arp

b d,d* 2 if 2P f°

( Cc . Cc Cc
ey if £ < s18b

b d° b if 1°P £

where the material parameters fz‘ and fE denotes the porosity at the
onset of coalescence in the amorphous phase and the crystalline
phase respectively. The viscoplastic strain rates are given by:

8 a
2€ va f'Hén® with neyGh

a aop
€ va Bt with noy 2k
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According to Besson and Guillemer-Neel (2003) , the derivatives
with respect to stress tensor @ 3=@ and @ {,=@ are computed as:

1
a
= Huy, @3: @ &0p
a ay a
c 1 C
2372 @;: @& @1p
a a;, a
Then the normal tensor to the amorphous yield surface  n, is
de“ned by:
 he wPEspRR
3r
% Pa % . @ 1ap
a .
238 PP f7q203ld By sinh 2 ®2p
qara wBsinh G
P2 v D
238 bBp f2aald H sinh % e
Similarly, the normal tensor to the crystalline yield surface ng is
de“ned by:
n® Y4 P PCI
c larp
zaaar PBp feqiqgldr  y sinh % — ©3p
c &
% QEasf°a B sinh q?zlr—:

T

c lap
zalarpfzpfqlqglarmsmh e

50

-100 -50 0 50 100
I(a")
(a) A=0.1
50 :
40 Z i
< 30 i OA(T\’TiSeS)
E/z
™ 20 ]
=\ 4 o |
10 \ 4
0 =
0 20 40 60 80 100
I(a")
(b)) N=2

Fig. 1. Yield functions given by Eq. (37) (a) A% 0:1 (b) N Y. 2.

It is worth noting that both normals  n? and n¢ are decomposed
into the sum of a deviatoric part and a spherical part. The non-null
spherical terms account for the volume change at the phase level
and contribute to overall volume change. The evolution laws of
tge isotropic hardening variable write:

2 yka 1

ﬁ
> o ue N ° &4p
Tt YAkt 1 o

For the PA6 under study, it is supposed that porosity are only
caused by void growth. Consequently, void nucleation are
ssneglectedes and the evolution laws of the isotropic hardening var-

iable simply write:

8
<f2 vda fPerregp

a&5p

£ vd  fPrregp

2.2.2. MM model coupled with GTN type damage **MMG1fee

As mentioned above, the damage is described by a unique
overall variable porosity f.

cavity volume

fY—— &6b
total volume

The model of the previous section is particularized as
oYt vaf; q, % qf Yaof and g, % q3 Y% q5. However, the evolution
of the porosity due to the void growth is obtained from mass
conservation.

£,8  ferree’p arb

2.3. Damage MM model based on CDM theory

In this section, a MM model based on continuum damage
mechanics is proposed to investigate the inelastic behavior of the
PA6. The CDM theory supposes that the crack initiation is preceded
by a progressive internal deterioration of the material (i.e. micro
cracks, micro defects) which induces a loss of strength. The isotro-
pic damage evolution is quanti“ed by means of a macroscopic sca-
lar variable D varying between 0 and 1 ( Chaboche, 1987). The
proposed model is based on the concept of effective stress and com-
bined with a principle of energy equivalence. Similarly to the MM
model based on GTN approach, two sub-models are distinguished:

Each one of the two phases is characterized by its own damage
variable: D, for the amorphous phase and D, for the crystalline
phase. This model will be referred to as «MMC2Des. The use of
two damage variables was also introduced by Boudifa et al.
(2009) in micromechanical model applied to polycrystalline
metals.

Damage is classically accounted for by the mean of a unique
variable D. This model will be referred to as **MMC1Dse.

2.3.1. MM model coupled with CDM type damage **MMC2Dee
The overall damage D is the average of the local damage of each
phase:

D%d zD*p zD° &o8b

In opposition to the GTNes approach for which only the effect of
the damage variable on plastic behavior is taken into account, the
in"uence of damage is introduced into the linear elasticity
behavior as well as into the plastic behavior. Accordingly, the elas-
tic free energy writes
&9p

qwel/% 1 681 zD*pzDP €:K: €
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Table 1
Gurson type multi-mechanism models.
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CDM based multi-mechanism models.
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Table 3
Identi“ed parameters for the ssundamageds+ PAG.

Isotropic hardening Norton law
Amorphous R ba Qa Na Ka

25 4.4 95 25 250
Crystalline 23 be Qc Ne Ke

3 3.8 110 5 800

The overall stress tensor is then deduced:

rda 851 zHD?p zD°bIX: € aB0ob

In the viscoplastic free energy, the two phases are supposed to
be affected by damage:

1 1
gw'? ¥a50aQu8 D*p&°B p 5beQcal D°p&°B ®B1p
In these conditions, the size change of the two elastic domain
are as follows:

R %d DH,Q.r?

&B2b
R Y%d DH.Q.re

The elastic thermodynamic forces Y3 and Y¢ associated respec-

tively with damage variables D® and D¢ are given by:
8

<Y Y q% Vs 181 zb& :K:€b
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Similarly, the viscoplastic thermodynamic forces
write:

Yo, and Yy,

( YRy Q97 valb,Q.a B

VP Q9 v lb. QP

84b

The overall thermodynamic forces Y® and Y associated with D*
and D¢ are the sum of the two previous thermodynamic forces:

8
<Y Ya YEpYP v 18l zP&:K:€bplb,Q.a%B

&B5pP
Y Vi Yip Y Y lEb&:K:ePbpibQa°B
In order to allow the description of the damage-induced plastic
volume variation or compressibility as in the GTNes approach, the
two vyield criteria can be expressed following ( Chaboche et al.,
2006) as:

8
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N 386b
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Tlcvipto 1y, ROR

I' ¢q is @ combination of the second and the “rst invariant of the
stress tensor:
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Fig. 2. Comparison of the experimental response and simulation of the tensile and creep tests.
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(b)

Fig. 3. Meshes of notched round bars with
(d) q ¥ 0:45 mm, LR position of laser re"ector.

A parametric study is shown in  Fig. 1 to illustrate typical yield
criteria given by Eq. (37) for various values of parameter N and A
(i¥aa or c). It can be seen that GTNes model can be (almost)
recovered by N=2and A =0.1. It should be expected that the mac-
roscopic results provided by the MM coupled with GTN and the
MM coupled with CDM theory might be substantially close. The
two normal to the yield surface of the amorphous phase and the
crystalline phase can be calculated as:

8

20
g B 28 AREY B PsbpAdd B )

88p
E ik 1P
Znevap—— 38 AP B PsppAada B

a D°p

In this formulation, a classic version of the Drucker...Pragger
model is recovered by choosing N % 1. Finally, the evolution laws
of the isotropic hardening variable and the damage variables are:

8
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2.3.2. MM model coupled with CDM type damage **MMC1Dee

By comparing to the model detailed in the previous section, a
simpli“ed version might be obtained by considering an overall
damage variable D associated to a thermodynamical force Y. In
such a case, damage is described by two material parameters s
and S. In the same way, the volume change is controlled by a single

R¥%3:6 mm and ro ¥ 1:8 mm for all specimens: (a) Notched round bars with

| | | J
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q¥%4mm, (b) q¥%1:6mm, (c) q%0:8mm,

parameter A. The so called *MMC1D+s model can be considered as a
particular case of the model «*MMC2Des by choosing S %S %S
Sy Yas Yas and A, YaA.YaA. The elastic thermodynamic force
writes:

YeV4%6€:K:(?D aop

Similarly, the viscoplastic thermodynamic forces
write:

Yo, and Yy,

1 1
Y %EbaQaaaﬁ b EchCaCt? #1p
The overall thermodynamic forces Y associated with D is the
sum of the two previous thermodynamic forces:
e Vp 1 . . 1 a
Y¥%Y'pY 1/4561 zb@.K.e*DbEbaQa& B A2b
In these conditions the evolution of the damage variable D is
given by:
A3p

DV & zHEp zk°

Table 4
Identi“ed parameters for the damage behavior of the PA6.

Model «sMMG2fee

0f ¥21:785 3 ¥1:34 da %0 qf %2:68 qS %14 d %0
Model «sMMG1fee

O, ¥a1:77 q, ¥1:25 d¥%0

Model «sMMC2De

S V4619 5 Y427 A Y0:025 S Yad5 s Y310 A ¥10:025
Model «sMMC1De*

S¥%10: s¥3: AY.0:065
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Table 5
Initial porosity/damage for the different models.
Radius Loading «*MMG2fee e*MMC1fee **MMC2Dee *«*MMC1Dee
I %70 MPa fo vafg ¥a1:22% fY21:22% D§ ¥4 D§ ¥a 0:0806 D ¥, 0:0806
g ¥24:0mm r %74 MPa 3 145 141:30% f ¥41:30% Dj ¥4 Dg ¥4 0:0566 D %20:0566
I ¥, 78 MPa fg 1/4f3 Y42:25% f ¥42:25% D ¥aDg ¥4 0:1132 D %,0:1132
I %70 MPa fovafg ¥21:92% f ¥41:92% D§ %2 Dg ¥4 0:1768 D %0:1768
q%a1:6 mm I %474 MPa 5 Vafg ¥42:14% f Y42:14% D§ ¥2D§ ¥20:1716 D %0:1716
I %78 MPa fg l/afg 1,2:08% f ¥22:08% D§ ¥ D ¥ 0:1580 D %2 0:1580
I %70 MPa fg l/afg 1,2:00% f ¥22:00% D§ ¥ D§ ¥a 0:2040 D % 0:2040
q ¥20:8 mm I Y274 MPa f5 Yafg ¥ 1:90% f ¥%.1:90% D§ %2 Dg ¥40:1641 D v20:1641
I %78 MPa f5 vafl ¥4 1:68% f ¥21:68% D§ ¥a D ¥4 0:1391 D %, 0:1391
I %70 MPa f5 vafl ¥4 0:68% f ¥20:68% D§ ¥a Dg ¥4 0:1000 D ¥ 0:1000
q ¥ 0:45 mm I %473 MPa 2 vafS ¥4 0:97% f ¥40:97% D§ ¥ D§ ¥ 0:0970 D ¥, 0:0970
I ¥480 MPa 3 vafg ¥4 1:11% f ¥21:11% Dj ¥ D ¥4 0:0802 D %4 0:0802

0 (mm)

0 125 250 40 80
time (h) time (h)
(a) 0=70MPa and p=4.0mm (b) 0=70MPa and p=1.6mm

ol ‘ ok ‘

0 17.5 35 0 3 6
time (h) time (h)
(¢) 0=74MPa and p=4.0mm (d) 0=74MPa and p=1.6mm
0°°
oc,fm-n‘ g
gl
. o & .
0.2 0.4 0 0.35 0.7
time (h) time (h)
(e) 0=78MPa and p=4.0mm (f) 0=78MPa and p=1.6mm
[MMG2f —6— MMC2D —6— MMG1f —&— MMC1D exp O |

Fig. 4. Creep tests used for the identi“cation of the damage parameters (=4 mm and 1.6 mm) ... notched specimen.
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time (h)
(a) 0=T0MPa and p=0.8mm

0 4 8

time (h)
(¢) 0=74MPa and p=0.8mm

0 !
0 1 2
time (h)
(e) 0=78MPa and p=0.8mm

225 450
time (h)
(b) 0=70MPa and p=0.45mm

0 L
0 75 150
time (h)
(d) 0=73MPa and p=0.45mm

0 !
0 0.7 1.4
time (h)
(f) 0=80MPa and p=0.45mm

[MMG2f —6— MMC2D —6— MMG1f —&— MMC1D

exp O |

Fig. 5. Creep tests used for the identi“cation of the damage parameters (

Table 6
Initial NODs ( dy) for the different specimens.

Radius Loading NOD (do)
r ¥470 MPa 8.085 mm
q % 4.0 mm I Ya74MPa 8.654 mm
I %78 MPa 8.239 mm
r ¥470 MPa 5.263 mm
g ¥%1:6 mm I Y274 MPa 6.097 mm
I %78 MPa 6.504 mm
I %70 MPa 4.198 mm
g% 0:8 mm I %74 MPa 3.566 mm
r ¥478 MPa 3.530 mm
I %70 MPa 8.500 mm
q ¥ 0:45 mm r ¥473 MPa 5.800 mm
r ¥280 MPa 6.500 mm

The detailed equations of the MM model coupled with GTN type
damage and the MM model coupled with the CDM theory are sum-
marized in Tables 1 and 2, respectively.

3. Results

In the previous section, Eqgs. (4)...(43) display some material
coef‘cients that have to be determined (see also Tables 1 and 2).
Identi“cation of these parameters was performed using the
following procedure:

(g =0.8 mm and 0.45 mm) ... notched specimen (Continued).

Tensile and creep tests performed on smooth specimen are “rst
used to identify the material parameters of the ssundamaged
materiales common to all four models. The strain rate was of
0.026 s * for the tensile test and the creep tests are performed
at the following load levels (71, 76, 79, 80, 82 MPa).

Creep tests carried out on notched specimen are then used for
the determination of the material parameters dedicated to char-
acterize the damage behavior. A “rst selection of models is
made on this basis.

Numerical results are “nally analyzed to check the relevance of
the selected models and to retain the more predictive model.

3.1. Identi“cation of the material parameters of the seundamaged
materiales (smooth specimen)

First, damage were deactivated in order to focus only on the
undamaged model coef“cients obtained from smooth specimens.
The apparent Younges elastic modulus have been already
determined in the work of Regrain et al. (2009) . It is checked here
by calculating the initial slope of the stress...strain curve and set up
to 2800 MPa. Poissones ratio is assigned to M= 0.38. The identi“ca-
tion process of the remaining parameters has conducted to
following two main steps:
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Fig. 6. Simulated (with «sMMC2De+ and «MMG2fs» models) and experimental creep rates for the notched specimens.

0.01  0.02 0.03 0.04 0.05 0.06
time:108000 f min:0.0130 f max:0.0700

0 0.02 0.04 0.06 0.08 0.1
time:504000 f_min:0.0096 f max:0.1166

Fig. 7. Contour plot of the porosity predicted by the model ««sMMG2fee at the beginning of the tertiary creep stage (108,000 s for

The “rst step of the optimization procedure is devoted to the
determination of the material parameters of the amorphous
phase which deals with short time effect. Crystalline phase
seems not to produce creep strain during tensile tests.
Therefore, only the mechanism associated to the amorphous
phase is activated. A big value is assigned to the initial size of
the elastic domain for mechanism of the crystalline phase.
The parameters n,; Ka; Q,; ba, and F?g are “rst identi“ed. The
non-linear behavior of the amorphous phase is mainly obtained
by the material parameter n,. Tensile tests show that this
non-linearity was not pronounced enough, so that n, is esti-
mated at 2.5. The value of yield stress is estimated graphically

g =4 mm, 504,000 s for g =0.45mm).

when the stress...strain curve deviates from linear to nonlinear
regime ( 40 MPa). R is assigned arbitrarily to 20 MPa to
ensure to the mechanism of the amorphous phase to take over
and replace the elastic behavior. The evaluation of the
remaining parameters K,; Q,; b, is then performed through
an optimization process.

The second step of the optimization procedure deals with the
optimization of the parameters of the crystalline phase
supposed to deal with long time effect encountered in the creep
tests. To be in agreement with the time dependent phenomena,
n. is approximately set to 2 na* 5. R is constrained at a small
value less then 10 MPa. In this step, when it is necessary, some
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Fig. 8. Damage variables versus radial strain curves of two notch radii

of the parameters estimated in the “rst step were adjusted in
order to enable better representation of the experimental ten-
sile curves.

The material parameters are numerically identi“ed by means of
the optimization module of the software Zset ( Besson et al., 1998)
with a sequential quadratic programming (SQP) method (  Stoer,
1985). This optimization method is suitable when minimizing the
deviation between experimental data and simulated tests when
the simulation is near the experiments. It also allows to include
constraint conditions that relate the different parameters. The list
of the calibrated coef“cients for the MM models is given in Table 3
and the corresponding comparison between simulated responses
and experimental tensile and creep data are shown in  Fig. 2. Since
this “rst stage is only focused on the determination of undamaged
model coef‘cients, the simulations were intentionally interrupted
before necking occurs (after 6% for the tensile test and at the end
of secondary creep for the creep tests). For the sake of clarity, The
creep tests (Figs. 2b...f) are shown in separate plots. Indeed, as the
load level increases the time of the end of secondary creep
decreases. The MM model is able to reproduce both short (tensile
test) and long term creep strain history of the PA6 thanks to the
opportunity allowed by the MM model to separate the two different
behaviors in the constitutive equations. It is worth noting that only
10 parameters are used for the undamaged material. In the next
section, these parameters will be kept unchanged. Notched speci-
men devoted to characterize the damage behavior will then be used
to identify the remaining material parameters. The four models
o MMG2fee, e¢MMC2Dee, esMMG1fee and «sMMC1Dee will therefore be
evaluated in predicting creep behaviors of notched specimens
with different notch radii. The experimental responses used in

gq=4.0mm and (= 0.45 mm for both «sMMG2fss and *sMMC2D++ models for I =74 MPa.

evaluating the proposed include result taken from Cayzac et al.
(2013) and new experiments performed in the present work.

3.2. Identi“cation of the material parameters of the ss«damaged
materiales (notched specimen)

The material parameters ( Table 3) identi“ed using tensile and
creep tests performed on smooth specimens parameters will not
be further modi“ed. In order to validate the predictive capabilities
of the proposed theory and its numerical implementation, “nite
element simulations of notched specimens subjected to creep
behavior are used to evaluate the remainder of material parame-
ters that characterize the damage behavior. Multiaxial specimens
consisting of notched round bars with machined notch root radii
(q=0.45, 0.8, 1.6 and 4 mm) are used for that purpose. Specimens
with a sharper notch radius ( Q= 0.45, 0.8 mm) are used to check
the accuracy of the model for high stress triaxiality ratio where
the ductility loss is greatest. The larger notch depths ( =1.6 and
4 mm) are devoted to study the model capability to account for
low stress triaxiality ratio. Computations were performed thanks
to the “nite element code Zset. For all the geometries, axisymmet-
rical elements with reduced integration were used with updated
Lagrangian formulation under “nite strain. Only one-quarter of
the geometry are meshed as illustrated in  Fig. 3. Distributed loads
corresponding to the experimental one is imposed on the top node
sets. A node located at the position of the laser beam re”ector ssLRee
was selected to follow the creep notch opening displacement
(NOD), d. Four stress creep levels (70, 74, 78 and 80 MPa) were con-
sidered to evaluate the prediction of the NOD for the four consid-
ered models. The material parameters were adjusted ssmanuallyes
in order to enable better representation of the tertiary creep. In
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Fig. 9. Stress and strain versus strain of two notch radii

addition, the initial porosity is evaluated separately for each test.
Indeed, a detailed study performed by Laiarinandrasana et al.
(2010) has demonstrated that the initial porosity measured exper-
imentally of the undeformed PA6 varies between 1% and 2%.
Although this discrepancy is quite acceptable from an experimen-

tal point of view, the numerical results are very sensitive to the ini-

tial porosity. The heterogeneous distribution of the initial porosity

in the specimens is at the origin of a noticeable scatter of the long
term creep behavior. Accordingly, initial damage is taken into
account through fo %f§ %fg ...0 for the models «MMG2fss et
**MMG1fes and through Dy ¥2D§ ¥4 Dj ...0 for the models ssMMC2Des
et «MMC1Des. The different estimated values are displayed in
Table 5. The transition from secondary to tertiary creep corre-
sponds to the minima of the strain rate. The optimized material
parameters are listed in Table 4 and the corresponding results
are shown in Figs. 4 and 5. It can be seen that the general trends
are captured by the models and the d values are also well repro-
duced. However, in terms of d rate, the models underestimate
the experimental values for the notch root radii ( =1.6 and
0.8 mm). Note that dis well predicted by the models for the notch
root radii =4 and 0.45 mm except for the load level I =78 MPa.
The triggering of the tertiary creep corresponding to damage initi-
ation responsible of abrupt increase of strain is well simulated by
the models ««sMMG2fee and *«*MMC2Des. In order to investigate the
creep rate, the deformation of the notched specimen is de“ned as:

HM4p

ey, L a dot

0
where dp_ is the NOD corresponding to the end of the preloading

stage and d, is the initial NOD. The initial NODs corresponding to
the different specimens are summarized in  Table 6. Fig. 6. displays

g=4.0mm and (= 0.45 mm for both «MMG2fee and «sMMC2D++ models for I =74 MPa.

the creep rate for the different notch radii and the load level for the
models «sMMC2De* and *«sMMG2fee only. In the light of these compar-
ative results, it can be concluded that both MM models (coupled
with GTNes approach or with CDM theory) using a different damage
variable per phase (i.e. **MMC2De++ and «MMG2fe) correctly describe
the primary, secondary and tertiary creep phenomena under
high and low stress triaxiality ratio in opposition to the MM models

with an overall damage variable for the PA6. Indeed, the model
«MMC1De* underestimates the initiation time of the tertiary creep
whereas the model «MMG1fee overestimates its start. In addition,
both CDM theory and GTNes approach are suitable for prediction
of the behavior under low triaxiality ( Q=1.6 and 4 mm) and high
triaxiality ( ¢ =0.8 and 0.45 mm). The proposed models are valid
over a large time interval ranging from 0.4 h for the specimen with

a notch radius (=4 mm subjected to a creep stress of 78 MPa...
450 h for the specimen with  ( = 0.45 mm subjected to 70 MPa.

In terms of creep rates, models «MMC2Des and ¢MMG2fes are
very close each other. Fig. 6 shows the evolution of the creep rates
of these two models together with the experimental results for the
four notch radii ( qQ=0.45, 0.8, 1.6 and 4 mm) and the different
applied creep stresses (I' =70, 74, 80 MPa). Very good agreement
between the experimental creep rates and the simulated ones
can be depicted whatever the notch radius and whatever the
applied creep stress in the primary, secondary and tertiary creep
stages. The models «*MMC2Des and *sMMG2fse are then reliable for
the creep life prediction of materials like PA6.

3.3. Analysis of numerical local results

From now on, models ¢MMC1Des and ¢sMMG1fee will not be
considered anymore because they fail to reproduce the overall
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Fig. 10. Radial distribution of the damage variables corresponding to the minimal creep rate for I =74 MPa.

creep behavior of the notched specimens. The two retained models
*sMMC2De+ and «sMMG2fee are scrutinized in terms of local variables
(triaxiality ratio S, damages at the phase level and overall damage).
In this paper, it will be shown that both models s«sMMC2De* and
**MMG2fes accurately describe the experimental results. The model
«MMG2fee will be selected for its pertinent prediction of the local
informations such as damage. Qualitative comparison between
experiments and the prediction of the model eMMG2fee is
illustrated in  Fig. 7. In that “gure, the contour plot of the porosity
predicted by the model «sMMG2fee at the beginning of the tertiary
creep stage (108,000 s for =4 mm, 504,000s for ¢ =0.45mm)
is compared to whiteness of the experimental specimen. This is
in conformity with the distribution of the porosity obtained in

Sai et al. (2011). In this previous work, a thin horizontal intense
whitening was observed in the net section for the smaller notch
radius. However, light whitening was observed all along the
stretched necking zone for the higher notch radius. The intensity
of whitening indicates was seen as a substantial amount of dam-
age. In the following, comparisons are performed for a creep stress
of 74 MPa and two notch radii =4.0 mm and ( = 0.45 mm corre-
sponding to the lowest and the highest triaxiality ratio.

The amorphous damage ( D, or f,), the crystalline damage ( D, or
f.), the overall damage ( D or f) and the stress triaxiality ratio S are
plotted in Fig. 8 as function of the radial deformation  Dr=r,
following ( Boisot et al., 2011) who investigated these variables in
the center of minimal cross section. This kind of representation
corresponds to a time distribution parameterized by Dr=r, and
allows to distinguish more clearly the variation of the studied vari-
ables. The radial deformation usually linked to the volume change
reaches a value of 14% for = 4.0 mm and 4.5% for g = 0.45 mm. It

is observed that the triaxiality ratio S exhibits the same pro“les
and levels for the two models **sMMC2De<* and *sMMG2fee and for
the two notch radii ( g =4.0 mm and ( = 0.45 mm). The oscillations
observed on S are due to consecutive extension and re-necking
during the notch root deformation ( Boisot et al., 2011 ). Moreover,
it can be noticed that the maximum damage moves during the
loading along the axis of the specimen.

In the same Fig. 8 the simulated damage values are more pro-
nounced for the model ¢sMMC2Dss compared with the model
o MMG2fes.

The trace of the stress and strain tensors are also plotted in
Fig. 9 as function of the radial deformation  Dr=r,. Very close results
are obtained for the stress component with the two models
*MMC2Dess and <MMG2fee. The trace of the strain tensors
(amorphous, crystalline and macroscopic) predicted using the
GTNes approach are slightly higher than those simulated by the
CDM theory. It can be noted in particular that the strain tensor of
the crystalline (Tr B phase is quasi inactive at the beginning of
the deformation stage. Tr &€°P increases rapidly and becomes
predominant in comparison with Tr &P and Trdeb for the model
*MMG2fee in the case of ¥ 0:45. TroaEfPalso increases rapidly dur-
ing the deformation but is attenuated at the end of the deformation
stage for the model «sMMC2Dse.

The analysis of the local variables are performed along the
radial direction of the net sectionin  Figs. 10 and 11. The radial dis-
tribution of the variables  S; f; %; £° D; D* and D° corresponding
to the minimal creep rate that lasts from the end of primary creep
to the onset of tertiary creep for I =74 MPa is shown in Fig. 10
with both models «sMMG2fes and ««MMC2Dee for the two notch radii
(g=4.0mm and Q= 0.45mm). The times for which the creep rate
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Table 7

Time corresponding to the minimal creep rate for I %74 MPa.
Radius s MMG2fes «sMMC2De
q ¥24:0 mm 96,011 s 96,977 s
q ¥ 0:45 mm 398,938s 496,511s

is minimal are displayed in Table 7. A good adequacy is observed
for the stress triaxiality ratio between the two models whatever
the notch radius.

It is expected that the porosity follows the same trend as the
triaxiality ratio. Surprisingly,  Fig. 10c shows that is maximum in
the center of the specimen whereas f reaches its maximum level
in the vicinity of the notch root. This “nding is in conformity with
the results of Boisot et al. (2011) and can be explained by the fact
that porosity is induced by Tr & brather than the triaxiality ratio. In
fact, by observing that the trend is similar for the porosity dis-
played in Fig. 10c and the Trd& Pshown in Fig. 11c, one can notice
that this unexpected ¢ Ses pro“le is essentially due to that of J¥ PR
Moreover, this “nding is in conformity with the results of Boisot
et al. (2011) reporting that porosity is induced by Tr & prather than
the stress triaxiality ratio. However, damage distributions for the
two models completely differ. Indeed, for Q=4.0 mm, a decrease
of the three damage variables ( f;f* and f°) is depicted for the
model «MMG2fee. Whereas, D; D? increase and D° remains inactive.
These opposite behaviors can also be noticed for = 0.45 mm. For
the model «sMMG2fee, the damage variables increase up to a maxi-
mal values located in the vicinity of the notch root and then
decrease slightly. The damage variables predicted by the model
«MMC2Dee are very small and exhibit an abrupt increase to reach

I %274 MPa.

high level at the center of the notch. The observation can also be
con“rmed according to the radial distribution of the stress
and strain tensors shown in  Fig. 11. The model ««sMMC2Dee predicts
a quasi constant strain tensors for (=4.0mm and identical
amorphous,crystalline and overall behaviors.

The main concluding remarks may be summarized as follows.

The volume change is mainly caused by the hydrostatic stress
rather than the triaxiality ratio.

The comparisons between simulations with the model
*MMG2fse and experimental results show good accordance.
The local contributions damage at each phase level are also cor-
rectly estimated thanks to the GTNes approach deduced from
the micromechanical analysis.

The «MMC2D++ model is in good agreement with experimental
behavior of the creep testing of notched specimens with both
high notch radii (low triaxiality) and low notch radii (high
triaxiality). Despite the fact that the ««sMMC2Dee correctly repro-
duce the overall mechanical damage behavior, the analysis of
the local variables such as the damage at the phase level reveals
some shortcomings of the model that will need to be resolved.
CDM theory accounts for defects through a homogenization
concept and describes their growth macroscopically. Improve-
ments can be brought by linking the damage evolution to the
trace of the stress or the strain tensors.

4. Conclusion

This work aims at comparing two multi-mechanism models in
simulating the mechanical damage behavior of semi crystalline
polymers. The “rst model coupled with the GTN porous plasticity
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