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The biphasic character of semi-crystalline polymer was modeled by the multi-mechanism (MM) consti-
tutive relationships. Here, a comparative study between continuum damage mechanics (CDM) theory and
Mechanics of Porous Media (MPM) approach, both related to the MM model, is performed. This compar-
ison is based upon creep tests conducted on notched round bars made of PA6 semi-crystalline polymer to
enhance a multiaxial stress state. For CDM model, the damage is classically described by a unique overall
variable whereas the average of the local porosity at each phase level was considered for the MPM model.
For each model, the optimization of the set of material’s parameters was carried out by combining the
overall behavior of notched specimens subjected to creep loading, as well as the local information such
as the distribution of porosity. It is found that both CDM and MPM models, each coupled with MM model
correctly describe the overall creep behavior of the notched specimen if two damage variables are used.
Moreover the MM/MPM model is more relevant for predicting porosity distribution.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The frequent use of polymers in engineering components
requires reliable constitutive models to describe both their
mechanical and damage behaviors. Among these materials,
semi-crystalline polymers (SCP) exhibit high non linear mechanical
response caused by their structural changes that necessitates the
development of accurate constitutive models. These models
should be based on deformation and damage mechanisms to ana-
lyze inelastic behaviors of structures made of SCP. During the two
last decades, extensive research was accomplished on the investi-
gation of the behavior of SCP materials. These works are of two
kinds (i) constitutive models (ii) durability (damage mechanics
and failure).

� Examples of studies devoted to analyze SCP stress–strain
response includes the works of Dusunceli and Colak (2007),
Drozdov and Christiansen (2008), Baudet et al. (2009), Bles et al.
(2009), Drozdov (2010), Epee et al. (2011), Ricard et al. (2014).
The large deformation level, the strain rate effect, the influence of
the crystallinity ratio are factors that influence the SCP behavior,
see for instance Danielsson et al. (2002), Drozdov (2010), Epee
et al. (2011), Drozdov (2013), Abu Al-Rub et al. (2014).
� In addition to the factors enumerated above, SCP might contain

initial voids that grow and coalesce during deformation and
should be considered. Therefore, SCP are assumed to be porous
media containing micro-voids in the undeformed state
considered as damage. They are at the origin of failure by their
coalescence during mechanical loading (Laiarinandrasana et al.,
2010; Boisot et al., 2011). The durability of the SCP was in the
focus of a second class of researches. The durability prediction
requires a better understanding of the failure mode of struc-
tures made of SCP, see for instance Cotterell et al. (2007),
Wang et al. (2010), Detrez et al. (2011), Frontini et al. (2012),
Leevers (2012), Ricard et al. (2014), Abu Al-Rub et al. (2014).

Two broad approaches have emerged in the literature to predict
failure of materials: continuum damage mechanics (CDM) theory
and the Mechanics of Porous Media (MPM) concept. The first class
of model is known to provide good predictions under shear
tensile loading condition where typically low stress triaxialities
are encountered. Whereas, according to Brunig et al. (2013), for

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.10.031&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.031
mailto:kacemsai@yahoo.fr
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.031
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


M. Jeridi et al. / International Journal of Solids and Structures 53 (2015) 12–27 13
instance, porous plasticity model type is more appropriate at high
stress triaxialities.

� CDM theory describes the effects of growth on macroscopic
variables. This approach has been extensively applied to metal-
lic materials (Lemaitre and Desmorat, 2001; Hambli, 2001;
Lemaitre et al., 2000; Chaboche et al., 2006; Saanouni, 2008;
Boudifa et al., 2009; Ayoub et al., 2011). In the CDM approach,
damage is modeled at the macroscopic level by means of
thermodynamic variable that leads to elastic moduli degradation
and may also affect the plastic behavior. This approach can be
extended in order to include volumetric plastic strains that play
important roles in the ductile fracture under high triaxialities
(Brunig et al., 2013).
� MPM models such as that of Gurson–Tvergaard–Needleman

(GTN), initiated by Gurson (1977) are based on the assump-
tion that damage occurs at microstructural level due to
micro-void nucleation, growth and coalescence. Void growth
is linked to the plastic strain and the stress triaxiality level.
This approach was adopted for instance by Pardoen and
Hutchinson (2000), Besson and Guillemer-Neel (2003),
Monchiet et al. (2008), Sai et al. (2011), Oral et al. (2012),
Ognedal et al. (2014). Improvements was proposed in order
to take into account the effects of low triaxiality during shear-
ing (Nahshon and Hutchinson, 2008; Nielsen and Tvergaard,
2009; Tvergaard and Nielsen, 2010). Some difficulties may
also be encountered by the porous plasticity models that are
not able to correctly predict the crack propagation path
(Hambli, 2001). Another limitation of the model is that
nucleation of the voids does not occur under compression
(Nahshon and Xue, 2009).

Comparative studies between the GTN porous plasticity models
and the CDM theories have been performed for instance by Hambli
(2001), Mkaddem et al. (2004), Pirondi et al. (2006), Li et al. (2011),
Malcher et al. (2012), Andrade et al. (2014).

The present work is a continuation of previous studies devoted
to propose reliable constitutive models that consider both mechan-
ical and damage behavior of Polyamide 6 (PA6) and Polyamide 11
(PA11) subjected to tensile and creep loadings. These models belong
to two distinct approaches (i) the so-called multi-mechanism
(MM) formalism (Regrain et al., 2009; Regrain et al., 2009; Sai
et al., 2011; Cayzac et al., 2013) (ii) the unified approach
(mono-mechanism) (Laiarinandrasana et al., 2010). The first
category is more appropriate for SCP since it allows the distinction
of the two phases by means of the crystallinity index. Therefore, it
provides local information such as, plastic strains, stresses and
damage in each phase. Only multi-mechanism model will be
then considered in the sequel. The MM formalism that considers
both mechanical and damage behavior of SCP was used to study
the void growth, the creep and tensile behavior and the damage
localization in notched specimens. An attempt is then made here
to enroll the same MM model to GTN and CDM theory.

The novelties in this work are two folds:

� Coupling the CDM theory and the MM model: to the authors’
best knowledge this association has never been proposed
before;
� For the two MM-associated models, it is proposed to consider

the damage (i) as an intrinsic local variable related to each spe-
cific phase, (ii) as a unique overall variable over both phases.

The paper is organized in the following manner: Constitutive
equations of the proposed MM models are detailed in section 2.
To assess their reliability, the two MM models are compared with
experimental data base taken from the works of Regrain et al.
(2009), Cayzac et al. (2013) in Section 3. A selection strategy is
developed with the aim to choose the more relevant model. A first
selection of the models is performed by comparison to creep
behavior of notched specimen in Section 3.1. The local responses
of the remaining models are then analyzed in Section 3.2 to retain
the more appropriate model(s). The local contribution of damage
state at each phase level is critically commented in Section 3.3.

2. Modeling

Since SCP consist of amorphous and crystalline phases, MM
approach is good candidate to describe the polymeric material as
a composite material. Amorphous and crystalline phases are,
respectively, mapped to a first mechanism referred to as ‘a’ and a
second mechanism referred to as ‘c’. The MM approach is intended
here to describe the contribution of the amorphous phase and the
crystalline phase to the inelastic behavior of SCP characterized by
their crystallinity ratio z.

The use of a finite strain formulation through updated lagrang-
ian formalism is needed to model large-strain deformation of
polymer. The material behavior is based on Green–Naghdi
transformation of the stress–strain problem into an ‘‘equivalent
material referential’’. This kind of formulation can be applied to
materials with tensorial internal variables without modifying the
local evolution rules (Ladeveze, 1999). The model is described by:

L
�
¼ _F
�

F
�
�1 D

�
¼ 1

2
L
�
þL
�

T
� �

X
�
¼ 1

2
L
�
�L
�

T
� �

ð1Þ

where F
�

is the deformation gradient, L
�

the rate of deformation, D
�

the stretch rate and X
�

the rotation rate. The stretch rate tensor is
transported into a local rotated referential following the expression:

_e
�
¼ R
�

T D
�

R
�

ð2Þ

where the rotation tensor R
�

is determined by the polar decomposi-
tion of the deformation gradient F

�
¼ R
�

U
�

. R
�

and U
�

describe respec-

tively a pure rotation and a pure stretch tensor.
The integrated strain tensor is decomposed into both elastic and

inelastic parts. Thanks to updated lagrangian formulation, consti-
tutive relations can be expressed as in small strain hypothesis.
Therefore, dealing with the elastic strain tensor is equivalent to a
hypoelastic formulation in agreement with a Green–Naghdi stress
rate. The stress measure is here the Cauchy stress r

�
obtained by

using the conjugate stress S
�

which results from the material behav-
ior integration:

r
�
¼ det�1ðF

�
ÞR
�

S
�

R
�

T ð3Þ

Under the small deformation hypothesis and using the assump-
tion of uniform elasticity, the total strain can be decomposed into
an elastic part and an inelastic one.

e
�
¼ e
�

e þ e
�

in ð4Þ

The assumption of uniform strain in the semi-crystalline
polymers was also made in the works of Brusselle-Dupend and
Cangémi (2008), Baudet et al. (2009), Shojaei and Li (2013). An
other group of works considers that each phase has its own elastic
strain (Bédoui et al., 2004; Zairi et al., 2011). The total inelastic
strain is the average of the irreversible deformation of each phase:

e
�

in ¼ ð1� zÞe
�

a þ ze
�

c ð5Þ

where e
�

a and e
�

c stand for the inelastic strain in the amorphous
phase and the crystalline phase respectively. Such a decomposition
has already been applied in other works (Nikolov and Doghri, 2000;
Ahzi et al., 2003; van Dommelen et al., 2003; Sheng et al., 2004;
Colak and Krempl, 2005).
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2.1. Background of the undamaged MM model

In the MM approach, each phase is associated to a local stress
tensor calculated from an appropriate stress concentration rule.
For the sake of simplicity and to reduce the number of material
coefficients, it is assumed in the present work that the macroscopic
stress is equal to the stress in each phase.

r
�

a ¼ r
�

c ¼ r
�
¼ K
�

: e
�

e ð6Þ

This assumption of uniform stress has been successfully used
for MM models in order to simulate the mechanical behavior of
medium density polyethylene (BenHadj Hamouda et al., 2007)
and more recently for PA6 (Cayzac et al., 2013). Note that the
difference of stiffness is supported by the strains as shown by
Eq. (5). Nikolov and Doghri (2000) have proposed earlier a
micro-mechanical model using a static homogenization scheme
for Polyethylene. The two local stresses are involved in two yield
functions /a and /c defining criteria for the amorphous phase
and crystalline phase respectively. The present study is only
devoted to PA6 behavior under monotonic loading, the amorphous
and crystalline criteria write:

/a ¼ Jðr
�
Þ � Ra � Ra

0

/c ¼ Jðr
�
Þ � Rc � Rc

0

8<
: ð7Þ

where Jðr
�
Þ ¼ 3

2 s
�

: s
�

� �1=2
. s
�

is the deviatoric part of the stress tensor.

The two material parameters Ra
0 and Rc

0 denote the initial size of the
two elastic domains, whereas Ra and Rc characterize the size change
of each yield surface. They are associated to two internal variables
ra and rc:

Ra ¼ baQ ara

Rc ¼ bcQ crc

�
ð8Þ

Q a; ba; Q c and bc are isotropic hardening parameters linked to
the amorphous phase and to the crystalline phase respectively. To
take into account the rate sensitivity of the PA6, the model is
written here in the viscoplasticity framework by introducing the
material parameters Ka; na; Kc and nc:

_ka ¼ /a

Ka

D Ena

_kc ¼ /c

Kc

D Enc

8><
>: ð9Þ

The Macauley bracket h:i denotes the positive part (hxi ¼ 0 if
x 6 0 and x otherwise). According to the normality flow rule, the
viscoplastic strain rates may be expressed as:

_e
�

a ¼ _kan
�

a with n
�

a ¼ 3
2

s
�

Jðr
�
Þ

_e
�

c ¼ _kcn
�

c with n
�

c ¼ 3
2

s
�

Jðr
�
Þ

8><
>: ð10Þ

The evolution laws of the isotropic hardening variable are given
by:

_ra ¼ _ka 1� Ra

Qa

� �
_rc ¼ _kc 1� Rc

Qc

� �
8><
>: ð11Þ
2.2. Damage MM model based on GTN’s approach

The most popular porous plasticity model proposed originally
by Gurson (1977) is based on the concept of a plastic yield surface
which is function of void volume fraction (or porosity). The
porosity evolution results from the mass conservation principle.
Two MM sub-models can be distinguished:

� Since SCP consist of amorphous and crystalline phases, each
phase may be characterized by its own damage variable. The
total porosity is supposed to be the average of the local porosity
at each phase level f ¼ ð1� zÞf a þ zf c (Sai et al., 2011). The
porosity of the amorphous phase f a and the porosity of the
crystalline phase f c are defined as follows:
f a ¼ cavity volume in the amorphous phase
volume of the amorphous phase

f c ¼ cavity volume in the crystalline phase
volume of the crystalline phase

(
ð12Þ

The related model will be referred to as ‘‘MMG2f’’.
� The damage is classically described by a unique overall variable.

Indeed when damage takes place in the SCP, it cannot be
attributed to one specific phase. Therefore, an overall damage
variable f may be considered. It also results in a reduction of
the number of damage parameters.
f ¼ overall cavity volume
total volume of the material

ð13Þ

This classic assumption is used in the model referred to as
‘‘MMG1f’’.

2.2.1. MM model coupled with GTN type damage ‘‘MMG2f’’
The flow potentials for the two phases are as follows:

/a ¼ ra
H
� Ra

ð1�f aÞ � Ra
0

/c ¼ rc
H
� Rc

ð1�f c Þ � Rc
0

8<
: ð14Þ

The effective size change of the elastic domain of each phase is
affected by the damage level f a and f c respectively. They are
related to two internal variables ra and rc as:

Ra ¼ ð1� f aÞbaQ ara

Ra ¼ ð1� f cÞbcQ crc

(
ð15Þ

The effective stresses ra
H

and rc
H

are implicitly founded accord-
ing to Besson and Guillemer-Neel (2003) by the conditions:

Gaðr
�
; f a
�;ra

H
Þ ¼

Jðr
�
Þ

ra
H

� �2

þ 2qa
1f a
� cosh qa

2
2

Iðr
�
Þ

rH

� �
� 1� qa

1f a
�

� �2 ¼ 0

Gcðr
�
; f c
�;rc

H
Þ ¼

Jðr
�
Þ

rc
H

� �2

þ 2qc
1f c
� cosh qc

2
2

Iðr
�
Þ

rH

� �
� 1� qc

1f c
�

� �2 ¼ 0

8>><
>>:

ð16Þ

The material parameters qa
1; qa

2; qc
1 and qc

2 accounts for interac-
tions (Faleskog et al., 1998). f a

� and f c
� are respectively functions of

the porosity f a and f c. These two phenomenological functions
account for void coalescence in the amorphous and crystalline
phases.

f a
� ¼

f a if f a
< f a

c

f a
c þ daðf a � f a

c Þ if f a P f a
c

(
ð17Þ

f c
� ¼

f c if f c
< f c

c

f c
c þ dcðf c � f c

cÞ if f c P f c
c

(
ð18Þ

where the material parameters f a
c and f c

c denotes the porosity at the
onset of coalescence in the amorphous phase and the crystalline
phase respectively. The viscoplastic strain rates are given by:

_e
�

a ¼ ð1� f aÞ _kan
�

a with n
�

a ¼ @ra
H

@ r
�

_e
�

c ¼ ð1� f cÞ _kcn
�

c with n
�

c ¼ @rc
H

@ r
�

8><
>: ð19Þ
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According to Besson and Guillemer-Neel (2003), the derivatives
with respect to stress tensor @ra

H
=@ r

�
and @rc

H
=@ r

�
are computed as:

@ra
H

@ r
�

¼ � @Ga

@ra
H

� ��1
@Ga

@ r
�

ð20Þ

@rc
H

@ r
�

¼ � @Gc

@rc
H

� ��1
@Gc

@ r
�

ð21Þ

Then the normal tensor to the amorphous yield surface n
�a is

defined by:

n
�

a ¼ Pa
d s
�
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s I
�
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2
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Similarly, the normal tensor to the crystalline yield surface n
�c is

defined by:

n
�

c ¼ Pc
d s
�
þPc

s I
�
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d ¼ 3rH

2ðJðr
�
ÞÞ2 þ f c

�q
c
1qc
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qc
1qc
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�ðrHÞ2 sinh qc

2
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Fig. 1. Yield functions given by Eq. (37) (a) A ¼ 0:1 (b) N ¼ 2.
It is worth noting that both normals n
�

a and n
�

c are decomposed
into the sum of a deviatoric part and a spherical part. The non-null
spherical terms account for the volume change at the phase level
and contribute to overall volume change. The evolution laws of
the isotropic hardening variable write:

_ra ¼ _ka 1� Ra
ð1�f aÞQa

� �
_rc ¼ _kc 1� Rc

ð1�f cÞQc

� �
8><
>: ð24Þ

For the PA6 under study, it is supposed that porosity are only
caused by void growth. Consequently, void nucleation are
‘‘neglected’’ and the evolution laws of the isotropic hardening var-
iable simply write:

_f a ¼ ð1� f aÞTrð _e
�

aÞ
_f c ¼ ð1� f cÞTrð _e

�
cÞ

8<
: ð25Þ

2.2.2. MM model coupled with GTN type damage ‘‘MMG1f’’
As mentioned above, the damage is described by a unique

overall variable porosity f.

f ¼ cavity volume
total volume

ð26Þ

The model of the previous section is particularized as
f a ¼ f c ¼ f ; q1 ¼ qa

1 ¼ qc
1 and q2 ¼ qa

2 ¼ qc
2. However, the evolution

of the porosity due to the void growth is obtained from mass
conservation.

_f ¼ ð1� f ÞTrð _e
�

vpÞ ð27Þ
2.3. Damage MM model based on CDM theory

In this section, a MM model based on continuum damage
mechanics is proposed to investigate the inelastic behavior of the
PA6. The CDM theory supposes that the crack initiation is preceded
by a progressive internal deterioration of the material (i.e. micro
cracks, micro defects) which induces a loss of strength. The isotro-
pic damage evolution is quantified by means of a macroscopic sca-
lar variable D varying between 0 and 1 (Chaboche, 1987). The
proposed model is based on the concept of effective stress and com-
bined with a principle of energy equivalence. Similarly to the MM
model based on GTN approach, two sub-models are distinguished:

� Each one of the two phases is characterized by its own damage
variable: Da for the amorphous phase and Dc for the crystalline
phase. This model will be referred to as ‘‘MMC2D’’. The use of
two damage variables was also introduced by Boudifa et al.
(2009) in micromechanical model applied to polycrystalline
metals.
� Damage is classically accounted for by the mean of a unique

variable D. This model will be referred to as ‘‘MMC1D’’.

2.3.1. MM model coupled with CDM type damage ‘‘MMC2D’’
The overall damage D is the average of the local damage of each

phase:

D ¼ ð1� zÞDa þ zDc ð28Þ

In opposition to the GTN’s approach for which only the effect of
the damage variable on plastic behavior is taken into account, the
influence of damage is introduced into the linear elasticity
behavior as well as into the plastic behavior. Accordingly, the elas-
tic free energy writes

qwe ¼ 1
2

1� ðð1� zÞDa þ zDcÞ
� �

e
�

e : K
�

: e
�

e

� �
ð29Þ



Table 1
Gurson type multi-mechanism models.

‘‘MMG2f’’ ‘‘MMG1f’’
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Table 3
Identified parameters for the ‘‘undamaged’’ PA6.

Isotropic hardening Norton law

Amorphous Ra
0 ba Qa na Ka

25 4.4 95 2.5 250

Crystalline Rc
0 bc Qc nc Kc

3 3.8 110 5 800
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The overall stress tensor is then deduced:

r
�
¼ ð1� ðð1� zÞDa þ zDcÞÞK

�
: e
�

e ð30Þ

In the viscoplastic free energy, the two phases are supposed to
be affected by damage:

qwvp ¼ 1
2

baQað1� DaÞðraÞ2 þ 1
2

bcQ cð1� DcÞðrcÞ2 ð31Þ

In these conditions, the size change of the two elastic domain
are as follows:

Ra ¼ ð1� DaÞbaQ ara

Rc ¼ ð1� DcÞbcQ crc

�
ð32Þ

The elastic thermodynamic forces Ye
a and Ye

c associated respec-
tively with damage variables Da and Dc are given by:
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: e
�

eÞ

Ye
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�

eÞ

8<
: ð33Þ
Fig. 2. Comparison of the experimental response
Similarly, the viscoplastic thermodynamic forces Ya
vp and Yc

vp

write:

Yvp
a ¼ �q @wvp

@Da ¼ 1
2 baQ aðraÞ2

Yvp
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@Dc ¼ 1
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The overall thermodynamic forces Ya and Yc associated with Da

and Dc are the sum of the two previous thermodynamic forces:
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a þ Yvp
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In order to allow the description of the damage-induced plastic
volume variation or compressibility as in the GTN’s approach, the
two yield criteria can be expressed following (Chaboche et al.,
2006) as:

/a ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð1�DaÞ
p ra

eq � Ra
� �

� Ra
0

/c ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
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p rc
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� �

� Rc
0

8><
>: ð36Þ

req is a combination of the second and the first invariant of the
stress tensor:

ra
eq ¼ ð1� AaÞðJðr�ÞÞ
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� �1
N

rc
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N

� �1
N

8>>>><
>>>>:

ð37Þ
and simulation of the tensile and creep tests.



Fig. 3. Meshes of notched round bars with R ¼ 3:6 mm and r0 ¼ 1:8 mm for all specimens: (a) Notched round bars with q ¼ 4 mm, (b) q ¼ 1:6 mm, (c) q ¼ 0:8 mm,
(d) q ¼ 0:45 mm, LR position of laser reflector.

Table 4
Identified parameters for the damage behavior of the PA6.
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A parametric study is shown in Fig. 1 to illustrate typical yield
criteria given by Eq. (37) for various values of parameter N and Ai

(i ¼ a or c). It can be seen that GTN’s model can be (almost)
recovered by N = 2 and Ai = 0.1. It should be expected that the mac-
roscopic results provided by the MM coupled with GTN and the
MM coupled with CDM theory might be substantially close. The
two normal to the yield surface of the amorphous phase and the
crystalline phase can be calculated as:

n
�

a ¼
Jðr
�
Þ

1
N
�1ð Þffiffiffiffiffiffiffiffiffiffiffi
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p 3
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ðN�1Þ I
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n
�
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Jðr
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Þ

1
N�1ð Þffiffiffiffiffiffiffiffiffiffiffi

ð1�Dc Þ
p 3

2 ð1� AcÞðJðr�Þ
ðN�2Þ s

�
Þ þ AcðIðr�Þ

ðN�1Þ I
�

� �
8>>>><
>>>>:

ð38Þ

In this formulation, a classic version of the Drucker–Pragger
model is recovered by choosing N ¼ 1. Finally, the evolution laws
of the isotropic hardening variable and the damage variables are:

_ra ¼ _ka 1ffiffiffiffiffiffiffiffiffiffiffi
ð1�DaÞ
p � Ra

ð1�DaÞQa

� �

_rc ¼ _kc 1ffiffiffiffiffiffiffiffiffiffiffi
ð1�Dc Þ
p � Rc

ð1�DcÞQc

� �
_Da ¼ _ka Ya

Sa

� �sa

_Dc ¼ _kc Yc

Sc

� �sc

8>>>>>>>>>><
>>>>>>>>>>:

ð39Þ
Model ‘‘MMG2f’’
qa

1 ¼ 1:785 qa
2 ¼ 1:34 da ¼ 0 qc

1 ¼ 2:68 qc
2 ¼ 1:4 dc ¼ 0

Model ‘‘MMG1f’’
q1 ¼ 1:77 q2 ¼ 1:25 d ¼ 0
Model ‘‘MMC2D’’
Sa ¼ 6:9 sa ¼ 2:7 Aa ¼ 0:025 Sc ¼ 4:5 sc ¼ 3:0 Ac ¼ 0:025
Model ‘‘MMC1D’’
S ¼ 10: s ¼ 3: A ¼ 0:065
2.3.2. MM model coupled with CDM type damage ‘‘MMC1D’’
By comparing to the model detailed in the previous section, a

simplified version might be obtained by considering an overall
damage variable D associated to a thermodynamical force Y. In
such a case, damage is described by two material parameters s
and S. In the same way, the volume change is controlled by a single
parameter A. The so called ‘‘MMC1D’’ model can be considered as a
particular case of the model ‘‘MMC2D’’ by choosing Sa ¼ Sc ¼ S;
sa ¼ sc ¼ s and Aa ¼ Ac ¼ A. The elastic thermodynamic force
writes:

Ye ¼ 1
2
ðe
�

e : K
�

: e
�

eÞ ð40Þ

Similarly, the viscoplastic thermodynamic forces Ya
vp and Yc

vp

write:

Yvp ¼ 1
2

baQ aðraÞ2 þ
1
2

bcQcðrcÞ2 ð41Þ

The overall thermodynamic forces Y associated with D is the
sum of the two previous thermodynamic forces:

Y ¼ Ye þ Yvp ¼ 1
2
ð1� zÞðe

�
e : K

�
: e
�

eÞ þ 1
2

baQ aðraÞ2 ð42Þ

In these conditions the evolution of the damage variable D is
given by:

_D ¼ ð1� zÞ _ka þ z _kc
� � Y

S

� �s

ð43Þ



Table 5
Initial porosity/damage for the different models.

Radius Loading ‘‘MMG2f’’ ‘‘MMC1f’’ ‘‘MMC2D’’ ‘‘MMC1D’’

r ¼ 70 MPa f a
0 ¼ f c

0 ¼ 1:22% f ¼ 1:22% Da
0 ¼ Dc

0 ¼ 0:0806 D ¼ 0:0806
q ¼ 4:0 mm r ¼ 74 MPa f a

0 ¼ f c
0 ¼ 1:30% f ¼ 1:30% Da

0 ¼ Dc
0 ¼ 0:0566 D ¼ 0:0566

r ¼ 78 MPa f a
0 ¼ f c

0 ¼ 2:25% f ¼ 2:25% Da
0 ¼ Dc

0 ¼ 0:1132 D ¼ 0:1132

r ¼ 70 MPa f a
0 ¼ f c

0 ¼ 1:92% f ¼ 1:92% Da
0 ¼ Dc

0 ¼ 0:1768 D ¼ 0:1768
q ¼ 1:6 mm r ¼ 74 MPa f a

0 ¼ f c
0 ¼ 2:14% f ¼ 2:14% Da

0 ¼ Dc
0 ¼ 0:1716 D ¼ 0:1716

r ¼ 78 MPa f a
0 ¼ f c

0 ¼ 2:08% f ¼ 2:08% Da
0 ¼ Dc

0 ¼ 0:1580 D ¼ 0:1580

r ¼ 70 MPa f a
0 ¼ f c

0 ¼ 2:00% f ¼ 2:00% Da
0 ¼ Dc

0 ¼ 0:2040 D ¼ 0:2040
q ¼ 0:8 mm r ¼ 74 MPa f a

0 ¼ f c
0 ¼ 1:90% f ¼ 1:90% Da

0 ¼ Dc
0 ¼ 0:1641 D ¼ 0:1641

r ¼ 78 MPa f a
0 ¼ f c

0 ¼ 1:68% f ¼ 1:68% Da
0 ¼ Dc

0 ¼ 0:1391 D ¼ 0:1391

r ¼ 70 MPa f a
0 ¼ f c

0 ¼ 0:68% f ¼ 0:68% Da
0 ¼ Dc

0 ¼ 0:1000 D ¼ 0:1000
q ¼ 0:45 mm r ¼ 73 MPa f a

0 ¼ f c
0 ¼ 0:97% f ¼ 0:97% Da

0 ¼ Dc
0 ¼ 0:0970 D ¼ 0:0970

r ¼ 80 MPa f a
0 ¼ f c

0 ¼ 1:11% f ¼ 1:11% Da
0 ¼ Dc

0 ¼ 0:0802 D ¼ 0:0802

Fig. 4. Creep tests used for the identification of the damage parameters (q = 4 mm and 1.6 mm) – notched specimen.
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Fig. 5. Creep tests used for the identification of the damage parameters (q = 0.8 mm and 0.45 mm) – notched specimen (Continued).

Table 6
Initial NODs (d0) for the different specimens.

Radius Loading NOD (d0)

r ¼ 70 MPa 8.085 mm
q ¼ 4:0 mm r ¼ 74MPa 8.654 mm

r ¼ 78 MPa 8.239 mm

r ¼ 70 MPa 5.263 mm
q ¼ 1:6 mm r ¼ 74 MPa 6.097 mm

r ¼ 78 MPa 6.504 mm

r ¼ 70 MPa 4.198 mm
q ¼ 0:8 mm r ¼ 74 MPa 3.566 mm

r ¼ 78 MPa 3.530 mm

r ¼ 70 MPa 8.500 mm
q ¼ 0:45 mm r ¼ 73 MPa 5.800 mm

r ¼ 80 MPa 6.500 mm

20 M. Jeridi et al. / International Journal of Solids and Structures 53 (2015) 12–27
The detailed equations of the MM model coupled with GTN type
damage and the MM model coupled with the CDM theory are sum-
marized in Tables 1 and 2, respectively.

3. Results

In the previous section, Eqs. (4)–(43) display some material
coefficients that have to be determined (see also Tables 1 and 2).
Identification of these parameters was performed using the
following procedure:
� Tensile and creep tests performed on smooth specimen are first
used to identify the material parameters of the ‘‘undamaged
material’’ common to all four models. The strain rate was of
0.026 s�1 for the tensile test and the creep tests are performed
at the following load levels (71, 76, 79, 80, 82 MPa).
� Creep tests carried out on notched specimen are then used for

the determination of the material parameters dedicated to char-
acterize the damage behavior. A first selection of models is
made on this basis.
� Numerical results are finally analyzed to check the relevance of

the selected models and to retain the more predictive model.
3.1. Identification of the material parameters of the ‘‘undamaged
material’’ (smooth specimen)

First, damage were deactivated in order to focus only on the
undamaged model coefficients obtained from smooth specimens.
The apparent Young’s elastic modulus have been already
determined in the work of Regrain et al. (2009). It is checked here
by calculating the initial slope of the stress–strain curve and set up
to 2800 MPa. Poisson’s ratio is assigned to m = 0.38. The identifica-
tion process of the remaining parameters has conducted to
following two main steps:



Fig. 6. Simulated (with ‘‘MMC2D’’ and ‘‘MMG2f’’ models) and experimental creep rates for the notched specimens.

0.01 0.02 0.03 0.04 0.05 0.06
time:108000       f_min:0.0130       f_max:0.0700

0 0.02 0.04 0.06 0.08 0.1
time:504000       f_min:0.0096       f_max:0.1166

Fig. 7. Contour plot of the porosity predicted by the model ‘‘MMG2f’’ at the beginning of the tertiary creep stage (108,000 s for q = 4 mm, 504,000 s for q = 0.45 mm).
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� The first step of the optimization procedure is devoted to the
determination of the material parameters of the amorphous
phase which deals with short time effect. Crystalline phase
seems not to produce creep strain during tensile tests.
Therefore, only the mechanism associated to the amorphous
phase is activated. A big value is assigned to the initial size of
the elastic domain for mechanism of the crystalline phase.
The parameters na; Ka; Qa; ba, and Ra

0 are first identified. The
non-linear behavior of the amorphous phase is mainly obtained
by the material parameter na. Tensile tests show that this
non-linearity was not pronounced enough, so that na is esti-
mated at 2.5. The value of yield stress is estimated graphically
when the stress–strain curve deviates from linear to nonlinear
regime (’ 40 MPa). Ra

0 is assigned arbitrarily to 20 MPa to
ensure to the mechanism of the amorphous phase to take over
and replace the elastic behavior. The evaluation of the
remaining parameters Ka; Q a; ba is then performed through
an optimization process.
� The second step of the optimization procedure deals with the

optimization of the parameters of the crystalline phase
supposed to deal with long time effect encountered in the creep
tests. To be in agreement with the time dependent phenomena,
nc is approximately set to 2� na ’ 5. Rc

0 is constrained at a small
value less then 10 MPa. In this step, when it is necessary, some



Fig. 8. Damage variables versus radial strain curves of two notch radii q = 4.0 mm and q = 0.45 mm for both ‘‘MMG2f’’ and ‘‘MMC2D’’ models for r = 74 MPa.
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of the parameters estimated in the first step were adjusted in
order to enable better representation of the experimental ten-
sile curves.

The material parameters are numerically identified by means of
the optimization module of the software Zset (Besson et al., 1998)
with a sequential quadratic programming (SQP) method (Stoer,
1985). This optimization method is suitable when minimizing the
deviation between experimental data and simulated tests when
the simulation is near the experiments. It also allows to include
constraint conditions that relate the different parameters. The list
of the calibrated coefficients for the MM models is given in Table 3
and the corresponding comparison between simulated responses
and experimental tensile and creep data are shown in Fig. 2. Since
this first stage is only focused on the determination of undamaged
model coefficients, the simulations were intentionally interrupted
before necking occurs (after 6% for the tensile test and at the end
of secondary creep for the creep tests). For the sake of clarity, The
creep tests (Figs. 2b–f) are shown in separate plots. Indeed, as the
load level increases the time of the end of secondary creep
decreases. The MM model is able to reproduce both short (tensile
test) and long term creep strain history of the PA6 thanks to the
opportunity allowed by the MM model to separate the two different
behaviors in the constitutive equations. It is worth noting that only
10 parameters are used for the undamaged material. In the next
section, these parameters will be kept unchanged. Notched speci-
men devoted to characterize the damage behavior will then be used
to identify the remaining material parameters. The four models
‘‘MMG2f’’, ‘‘MMC2D’’, ‘‘MMG1f’’ and ‘‘MMC1D’’ will therefore be
evaluated in predicting creep behaviors of notched specimens
with different notch radii. The experimental responses used in
evaluating the proposed include result taken from Cayzac et al.
(2013) and new experiments performed in the present work.

3.2. Identification of the material parameters of the ‘‘damaged
material’’ (notched specimen)

The material parameters (Table 3) identified using tensile and
creep tests performed on smooth specimens parameters will not
be further modified. In order to validate the predictive capabilities
of the proposed theory and its numerical implementation, finite
element simulations of notched specimens subjected to creep
behavior are used to evaluate the remainder of material parame-
ters that characterize the damage behavior. Multiaxial specimens
consisting of notched round bars with machined notch root radii
(q = 0.45, 0.8, 1.6 and 4 mm) are used for that purpose. Specimens
with a sharper notch radius (q = 0.45, 0.8 mm) are used to check
the accuracy of the model for high stress triaxiality ratio where
the ductility loss is greatest. The larger notch depths (q = 1.6 and
4 mm) are devoted to study the model capability to account for
low stress triaxiality ratio. Computations were performed thanks
to the finite element code Zset. For all the geometries, axisymmet-
rical elements with reduced integration were used with updated
Lagrangian formulation under finite strain. Only one-quarter of
the geometry are meshed as illustrated in Fig. 3. Distributed loads
corresponding to the experimental one is imposed on the top node
sets. A node located at the position of the laser beam reflector ‘‘LR’’
was selected to follow the creep notch opening displacement
(NOD), d. Four stress creep levels (70, 74, 78 and 80 MPa) were con-
sidered to evaluate the prediction of the NOD for the four consid-
ered models. The material parameters were adjusted ‘‘manually’’
in order to enable better representation of the tertiary creep. In



Fig. 9. Stress and strain versus strain of two notch radii q = 4.0 mm and q = 0.45 mm for both ‘‘MMG2f’’ and ‘‘MMC2D’’ models for r = 74 MPa.
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addition, the initial porosity is evaluated separately for each test.
Indeed, a detailed study performed by Laiarinandrasana et al.
(2010) has demonstrated that the initial porosity measured exper-
imentally of the undeformed PA6 varies between 1% and 2%.
Although this discrepancy is quite acceptable from an experimen-
tal point of view, the numerical results are very sensitive to the ini-
tial porosity. The heterogeneous distribution of the initial porosity
in the specimens is at the origin of a noticeable scatter of the long
term creep behavior. Accordingly, initial damage is taken into
account through f 0 ¼ f a

0 ¼ f c
0 – 0 for the models ‘‘MMG2f’’ et

‘‘MMG1f’’ and through D0 ¼ Da
0 ¼ Dc

0 – 0 for the models ‘‘MMC2D’’
et ‘‘MMC1D’’. The different estimated values are displayed in
Table 5. The transition from secondary to tertiary creep corre-
sponds to the minima of the strain rate. The optimized material
parameters are listed in Table 4 and the corresponding results
are shown in Figs. 4 and 5. It can be seen that the general trends
are captured by the models and the d values are also well repro-
duced. However, in terms of d rate, the models underestimate
the experimental values for the notch root radii (q = 1.6 and
0.8 mm). Note that _d is well predicted by the models for the notch
root radii q = 4 and 0.45 mm except for the load level r = 78 MPa.
The triggering of the tertiary creep corresponding to damage initi-
ation responsible of abrupt increase of strain is well simulated by
the models ‘‘MMG2f’’ and ‘‘MMC2D’’. In order to investigate the
creep rate, the deformation of the notched specimen is defined as:

e ¼ d� dPL

d0
ð44Þ

where dPL is the NOD corresponding to the end of the preloading
stage and d0 is the initial NOD. The initial NODs corresponding to
the different specimens are summarized in Table 6. Fig. 6. displays
the creep rate for the different notch radii and the load level for the
models ‘‘MMC2D’’ and ‘‘MMG2f’’ only. In the light of these compar-
ative results, it can be concluded that both MM models (coupled
with GTN’s approach or with CDM theory) using a different damage
variable per phase (i.e. ‘‘MMC2D’’ and ‘‘MMG2f’’) correctly describe
the primary, secondary and tertiary creep phenomena under
high and low stress triaxiality ratio in opposition to the MM models
with an overall damage variable for the PA6. Indeed, the model
‘‘MMC1D’’ underestimates the initiation time of the tertiary creep
whereas the model ‘‘MMG1f’’ overestimates its start. In addition,
both CDM theory and GTN’s approach are suitable for prediction
of the behavior under low triaxiality (q = 1.6 and 4 mm) and high
triaxiality (q = 0.8 and 0.45 mm). The proposed models are valid
over a large time interval ranging from 0.4 h for the specimen with
a notch radius q = 4 mm subjected to a creep stress of 78 MPa–
450 h for the specimen with q = 0.45 mm subjected to 70 MPa.

In terms of creep rates, models ‘‘MMC2D’’ and ‘‘MMG2f’’ are
very close each other. Fig. 6 shows the evolution of the creep rates
of these two models together with the experimental results for the
four notch radii (q = 0.45, 0.8, 1.6 and 4 mm) and the different
applied creep stresses (r = 70, 74, 80 MPa). Very good agreement
between the experimental creep rates and the simulated ones
can be depicted whatever the notch radius and whatever the
applied creep stress in the primary, secondary and tertiary creep
stages. The models ‘‘MMC2D’’ and ‘‘MMG2f’’ are then reliable for
the creep life prediction of materials like PA6.
3.3. Analysis of numerical local results

From now on, models ‘‘MMC1D’’ and ‘‘MMG1f’’ will not be
considered anymore because they fail to reproduce the overall



Fig. 10. Radial distribution of the damage variables corresponding to the minimal creep rate for r = 74 MPa.
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creep behavior of the notched specimens. The two retained models
‘‘MMC2D’’ and ‘‘MMG2f’’ are scrutinized in terms of local variables
(triaxiality ratio s, damages at the phase level and overall damage).
In this paper, it will be shown that both models ‘‘MMC2D’’ and
‘‘MMG2f’’ accurately describe the experimental results. The model
‘‘MMG2f’’ will be selected for its pertinent prediction of the local
informations such as damage. Qualitative comparison between
experiments and the prediction of the model ‘‘MMG2f’’ is
illustrated in Fig. 7. In that figure, the contour plot of the porosity
predicted by the model ‘‘MMG2f’’ at the beginning of the tertiary
creep stage (108,000 s for q = 4 mm, 504,000 s for q = 0.45 mm)
is compared to whiteness of the experimental specimen. This is
in conformity with the distribution of the porosity obtained in
Sai et al. (2011). In this previous work, a thin horizontal intense
whitening was observed in the net section for the smaller notch
radius. However, light whitening was observed all along the
stretched necking zone for the higher notch radius. The intensity
of whitening indicates was seen as a substantial amount of dam-
age. In the following, comparisons are performed for a creep stress
of 74 MPa and two notch radii q = 4.0 mm and q = 0.45 mm corre-
sponding to the lowest and the highest triaxiality ratio.

The amorphous damage (Da or f a), the crystalline damage (Dc or
f c), the overall damage (D or f) and the stress triaxiality ratio s are
plotted in Fig. 8 as function of the radial deformation Dr=r0

following (Boisot et al., 2011) who investigated these variables in
the center of minimal cross section. This kind of representation
corresponds to a time distribution parameterized by Dr=r0 and
allows to distinguish more clearly the variation of the studied vari-
ables. The radial deformation usually linked to the volume change
reaches a value of 14% for q = 4.0 mm and 4.5% for q = 0.45 mm. It
is observed that the triaxiality ratio s exhibits the same profiles
and levels for the two models ‘‘MMC2D’’ and ‘‘MMG2f’’ and for
the two notch radii (q = 4.0 mm and q = 0.45 mm). The oscillations
observed on s are due to consecutive extension and re-necking
during the notch root deformation (Boisot et al., 2011). Moreover,
it can be noticed that the maximum damage moves during the
loading along the axis of the specimen.

In the same Fig. 8 the simulated damage values are more pro-
nounced for the model ‘‘MMC2D’’ compared with the model
‘‘MMG2f’’.

The trace of the stress and strain tensors are also plotted in
Fig. 9 as function of the radial deformation Dr=r0. Very close results
are obtained for the stress component with the two models
‘‘MMC2D’’ and ‘‘MMG2f’’. The trace of the strain tensors
(amorphous, crystalline and macroscopic) predicted using the
GTN’s approach are slightly higher than those simulated by the
CDM theory. It can be noted in particular that the strain tensor of
the crystalline (Trðe

�
cÞ) phase is quasi inactive at the beginning of

the deformation stage. Trðe
�

cÞ increases rapidly and becomes
predominant in comparison with Trðe

�
aÞ and Trðe

�
Þ for the model

‘‘MMG2f’’ in the case of q ¼ 0:45. Trðe
�

cÞ also increases rapidly dur-
ing the deformation but is attenuated at the end of the deformation
stage for the model ‘‘MMC2D’’.

The analysis of the local variables are performed along the
radial direction of the net section in Figs. 10 and 11. The radial dis-
tribution of the variables s; f ; f a

; f c
; D; Da and Dc corresponding

to the minimal creep rate that lasts from the end of primary creep
to the onset of tertiary creep for r = 74 MPa is shown in Fig. 10
with both models ‘‘MMG2f’’ and ‘‘MMC2D’’ for the two notch radii
(q = 4.0 mm and q = 0.45 mm). The times for which the creep rate



Fig. 11. Radial distribution stress and strain corresponding to the minimal creep rate for r ¼ 74 MPa.

Table 7
Time corresponding to the minimal creep rate for r ¼ 74 MPa.

Radius ‘‘MMG2f’’ ‘‘MMC2D’’

q ¼ 4:0 mm 96,011 s 96,977 s
q ¼ 0:45 mm 398,938 s 496,511 s
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is minimal are displayed in Table 7. A good adequacy is observed
for the stress triaxiality ratio between the two models whatever
the notch radius.

It is expected that the porosity follows the same trend as the
triaxiality ratio. Surprisingly, Fig. 10c shows that is maximum in
the center of the specimen whereas f reaches its maximum level
in the vicinity of the notch root. This finding is in conformity with
the results of Boisot et al. (2011) and can be explained by the fact
that porosity is induced by Trðr

�
Þ rather than the triaxiality ratio. In

fact, by observing that the trend is similar for the porosity dis-
played in Fig. 10c and the Trðr

�
Þ shown in Fig. 11c, one can notice

that this unexpected ‘‘s’’ profile is essentially due to that of Jðr
�
Þ.

Moreover, this finding is in conformity with the results of Boisot
et al. (2011) reporting that porosity is induced by Trðr

�
Þ rather than

the stress triaxiality ratio. However, damage distributions for the
two models completely differ. Indeed, for q = 4.0 mm, a decrease
of the three damage variables (f ; f a and f c) is depicted for the
model ‘‘MMG2f’’. Whereas, D; Da increase and Dc remains inactive.
These opposite behaviors can also be noticed for q = 0.45 mm. For
the model ‘‘MMG2f’’, the damage variables increase up to a maxi-
mal values located in the vicinity of the notch root and then
decrease slightly. The damage variables predicted by the model
‘‘MMC2D’’ are very small and exhibit an abrupt increase to reach
high level at the center of the notch. The observation can also be
confirmed according to the radial distribution of the stress
and strain tensors shown in Fig. 11. The model ‘‘MMC2D’’ predicts
a quasi constant strain tensors for q = 4.0 mm and identical
amorphous,crystalline and overall behaviors.

The main concluding remarks may be summarized as follows.

� The volume change is mainly caused by the hydrostatic stress
rather than the triaxiality ratio.
� The comparisons between simulations with the model

‘‘MMG2f’’ and experimental results show good accordance.
The local contributions damage at each phase level are also cor-
rectly estimated thanks to the GTN’s approach deduced from
the micromechanical analysis.
� The ‘‘MMC2D’’ model is in good agreement with experimental

behavior of the creep testing of notched specimens with both
high notch radii (low triaxiality) and low notch radii (high
triaxiality). Despite the fact that the ‘‘MMC2D’’ correctly repro-
duce the overall mechanical damage behavior, the analysis of
the local variables such as the damage at the phase level reveals
some shortcomings of the model that will need to be resolved.
CDM theory accounts for defects through a homogenization
concept and describes their growth macroscopically. Improve-
ments can be brought by linking the damage evolution to the
trace of the stress or the strain tensors.

4. Conclusion

This work aims at comparing two multi-mechanism models in
simulating the mechanical damage behavior of semi crystalline
polymers. The first model coupled with the GTN porous plasticity
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approach whereas the second is based on the CDM theory. Two
cases are considered for each model (i) damage is described by a
unique overall variable (ii) each phase may be characterized by
its own damage variable. The selection strategy consists of the fol-
lowing steps. First, the material parameters of the ‘‘undamaged
material’’ common to all four models are identified by comparison
to tensile and creep tests performed on smooth specimens. A first
selection is then performed according to the predictive character of
creep behavior of notched specimen with different notch radii. It is
shown that models (GTN or CDM) with two damage variables
describe better the macroscopic results. Finally, the local responses
of the two remaining models are compared.

It can be concluded that MM model coupled with CDM theory
using two damage variable is in good agreement with all experi-
mental results. The MM model coupled with Gurson’s approach
and two damage variables describes correctly macroscopic experi-
mental results, but also predicts pertinent local informations such
as damage.

The damage considered in this paper consisted of initially
spherical voids. However, it was shown for the PA6 material under
study, that they are penny shaped with an evolving shape factor
during deformation (alexandre Cayzac, 2014; Laiarinandrasana
et al., 2010). Moreover, these voids are generally stacked in
columns, thus giving an arrangement in polar fans as reported by
Pawlak and Galeski (2008), Pawlak and Galeski (2010), Rozanski
and Galeski (2013). Ongoing work focuses on the experimental
characterization of these voids in terms of their distributions in
height and diameter within the net section. These distributions
should then be utilized during the materials parameter calibration
using inverse optimization method with the help of FE analysis.
Another issue is to couple the optimization with unit cell compu-
tations that explicitly take void anisotropy into account.
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