
HAL Id: hal-01109115
https://hal-mines-paristech.archives-ouvertes.fr/hal-01109115

Submitted on 26 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standards for Cooperative Intelligent Transportation
Systems: a Proof of Concept

Rodrigo Silva, Satoru Noguchi, Thierry Ernst, Arnaud de la Fortelle, Walter
Godoy Junior

To cite this version:
Rodrigo Silva, Satoru Noguchi, Thierry Ernst, Arnaud de la Fortelle, Walter Godoy Junior. Standards
for Cooperative Intelligent Transportation Systems: a Proof of Concept. The Tenth Advanced Inter-
national Conference on Telecommunications (AICT), International Academy, Research, and Industry
Association (IARIA), Jul 2014, Paris, France. �hal-01109115�

https://hal-mines-paristech.archives-ouvertes.fr/hal-01109115
https://hal.archives-ouvertes.fr

Standards for Cooperative Intelligent Transportation
Systems: a Proof of Concept

Rodrigo Silva, Satoru Noguchi,
Thierry Ernst, Arnaud de La Fortelle

Mines ParisTech
France

rodrigo silvabr@yahoo.com, satoru.noguchi@mines-paristech.fr
{thierry.ernst, arnaud.de la fortelle}@mines-paristech.fr

Walter Godoy Junior
Federal University of Technology Paraná - UTFPR

Brazil
godoy@utfpr.edu.br

Abstract—In recent years, a wide variety of stakeholders have
been working for the development of Intelligent Transportation
System solutions. Cooperation among the various actors of trans-
portation (vehicles, but also pedestrians, roads and infrastruc-
ture, traffic control centers, etc.) is seen as promising to enhance
the efficiency of transportation and reduce its negative impacts
(e.g., fatalities). However, it means that all communicating entities
have to talk the same language, hence the need for Cooperative
Intelligent Transportation Systems standards. There are now
lots of standards being produced by standardization organiza-
tion, e.g., International Standardization Organization (ISO) and
European Telecommunications Standards Institute (ETSI) and
there is a real need to understand how these standards can be
implemented. This paper overviews the Intelligent Transportation
System station reference architecture and presents a way of
practical implementation of a toy Android application based on
these standards as a proof of concept implementation. To our
knowledge, this is the first implementation description compliant
with these standards.

Keywords—Cooperative Intelligent Transportation System; ITS;
Standards; ISO; Wireless Networks.

I. INTRODUCTION

Transportation systems are increasingly stressed all around
the globe, especially in urban areas, and there is a clear need
to optimize them. An Intelligent Transportation System (ITS)
is seen as a solution to provide innovative services relating
to different modes of transport and traffic management. The
intelligence is brought by the ability of the system to react
using sensors and information processing. Most of the ITS
systems deployed today are autonomous in the sense that
they are stand-alone and dedicated systems (e.g., traffic lights
at an intersection, smart braking systems in a vehicle, etc.).
According to the functionality and their purpose, the ITS
applications can be classified in three primary categories [1]:

• Safety: Improve driving safety, e.g., preventing collision
and accident reporting;

• Efficiency: Traffic monitoring and traffic management;
• Infotainment: Video streaming and Internet access.
Tee next step is to connect these systems through com-

munication and having them cooperate, at least the two first
mentioned above (safety and efficiency) [2] [3]. In recent
years, a wide variety of stakeholders have been working

for development of ITS communication, such as the CAR-
2-CAR Communication Consortium gathering most of the
European car makers and suppliers, the European Commission
through several research projects ([4] [5] [6]), US DoT and
Japan. Aside the need for efficient communication, despite
limited bandwidth provided by physical carrier, one of the
most important things is the interoperability, because system
components can be developed by different stakeholders and
ITS system shall support modular-based integration.

There are mainly two ways to ensure interoperability: indus-
try standards or open standards produced by standardization
organization such as ISO, ETSI, Internet Engineering Task
Force (IETF), Institute of Electrical and Electronics Engineers
(IEEE) or European Committee for Standardization (CEN).
Our work is based on the second option and refers mainly
to the common ITS architecture designed by ISO 21217 [7].
This architecture is the basis for several standards within ISO
and beyond (ETSI and CEN notably) and a set — hopefully
consistent — of ITS standards is under developments.

However, standards never look like a developers guide and
they give some room for freedom in the way to implement.
To the opposite, all standards are not produced by the same
people and always result from compromises, so that there is no
guarantee all standards are consistent even though great efforts
are made to do so. Therefore, it is of high importance to under-
stand what are the relevant standards for a given application,
how they can be translated into functional components and
what are the choices a designer of a cooperative application
can safely do.

Based on a set of the ITS standards mentioned on Section
II, this paper presents a way of practical implementation of
the necessary ITS functions, why these set was chosen. We
intentionally choose a very simple application (position shar-
ing application) since the focus is not on the application part
but on the underlying functions described by the standards:
we refer to the implementation work that is “below” the
application. To demonstrate this implementation, an Android
application was created allowing several mobiles to exchange
information (i.e., the location of each mobile). Within each
mobile, an interface represents one’s own location and the
nearby mobiles’ location. To our knowledge, this is the first

implementation based on the ITS Standards and it shows
a proof of concept, demonstrating how ITS standards can
actually be implemented.

The paper is organized as follows. Section II overviews
the related ITS standards that have been used for this work.
The potential system architecture is described in Section
III; then, Section IV details the implementation of the ITS
standard-compliant application on Android. After discussing
the outcomes and potential issues of this development in
Section V, Section VI concludes the paper and proposes future
directions.

II. RELEVANT STANDARDS

The ISO 21217 standard ITS - Communications access
for land mobiles (CALM) - Architecture [7] is fundamental
for our application since it gives the reference frame for
our implementation and the other ITS standards refer to it.
It was prepared by Technical Committee ISO/TC 204, ITS
subcommittee and describes the communications reference
architecture of nodes called ITS stations designed for deploy-
ment in ITS communication networks.

Figure 1 shows the general ITS Station reference archi-
tecture, including interfaces between the various blocks with
informative details.

Fig. 1. ITS Station reference architecture [7].

The ITS architecture [7] is composed by: “Access” layer,
comprised of OSI layers 1 (Physical) and 2 (Data Link);
“Networking & Transport” layer, comprised of OSI layers
3 (Network) and 4 (Transport); “Facilities” layer, provides
application, information and communication supports and it is
comprised of OSI layers 5 (Session), 6 (Presentation) and 7
(Application); “Management”, a cross entity that containing
station management functionality; “Security”, a cross entity
that provide security services to others entities and “Appli-

cation”, a horizontal entity, which provides Human-Machine
Interface.

The ISO/TS 17423 standard ITS Cooperative systems
- ITS application requirements for automatic selection of
communication interfaces [8] is relevant for our application
because it specifies the requirements which we will use (e.g,
FlowType and transmission/reception Port Number). It relates
to ISO 21217 describing the ITS application requirements for
automatic selection of communication interfaces by System
Management entity. To select this communication profile, the
System Management entity uses the communication require-
ments, objectives of applications, communication protocol
status, regulations and policies. The requirements are divided
on five main classes: Operational, Destination, Performance,
Security, and Protocol.

The ISO/TS 17419 standard ITS Cooperative systems -
Classification and management of ITS applications in a global
context [9] is used for our application to give the identifiers for
each application process or entity. It illustrates and specifies
global classification and management of ITS applications.

The ISO/NP 17429 ITS - Cooperative systems - Profiles for
processing and transfer of information between ITS stations
for applications related to transport infrastructure manage-
ment, control and guidance [10] is necessary for our applica-
tion since it gives us the procedure to exchange data between
our mobile devices. It defines procedures useful to designers
and developers of ITS applications exchanging data between
ITS stations based on the ITS station reference architecture
(ISO 21217).

The ISO 24102-3 standard ITS Communications access for
land mobiles (CALM) - ITS station management Part 3: Ser-
vice access points [11] is used for our application to implement
the service access points. It specifies the management service
access points between the entities and layers described by ISO
21217 (e.g., Management, Facilities, Access, etc.).

III. DESIGN OF A TEST ITS APPLICATION

To evaluate how ITS standards can be implemented, we
develop a toy ITS application on personal mobile devices in
compliance with the ITS station reference architecture. We
implement a simple position sharing application, tested with
pedestrians, which sends its position and shows neighboring
pedestrians’ location on Android devices.

In this section, at first, we show the basic requirements of
our application, then describe a number of design choices to
adapt the application to ITS standards. Because of a wide
variety of ITS standards, there are two essential decisions: (i)
which standards should be implemented to satisfy application’s
requirement, and (ii) how they can be adapted to actual
implementation. This section, therefore, explores a set of key
ITS standards and design choices to implement them.

A. Application requirements

The proposed application is designed to detect nearby
pedestrians with smartphones and/or tablets, and to detect
and show the geographic position of surrounding devices.

To realize it, firstly, the application needs to obtain device’s
current location, e.g., from GPS. At the same time, it is
necessary to detect nearby devices and exchange positions with
each other. The received position information shall be time-
stamped and validated, then displayed on a graphical interface.
Regarding the communication, from the application’s point of
view, any type of access technology and protocol may be used
as long as the location information can be exchanged.

In summary, the functional requirements of the proposed
application are as follows:

• Location management: obtain device’s own location
• Discovery: detect the presence of nearby devices
• Communication: exchange the current location between

nearby devices
• Database: store and manage location information
• Human Machine Interface: display devices’ location on

map

B. Architecture design

To develop applications on the ITS station reference archi-
tecture [7], the first step is to identify which requirements
should be inside application or other entities. The potential
architecture designs are, therefore, as follows:

• Application-based solution: a traditional self-contained
solution, in which each application contains all the nec-
essary functions inside itself. Applications do not use
the Facilities layer and management entity functions but,
directly use the networking and transport layer features.

• Facility-based solution: most of the common functions
are integrated into the Facilities layer and Manage-
ment entity, while applications simply use them. In this
solution, the discovery, communication, and database
functions can be supported by ongoing ITS standards:
Generic message distribution handler, Communication
profile handler / System management entity, and Local
dynamic map, respectively [10].

Although the application-based solution is simple, it lacks
interoperability, extensibility, and incurs the cost of com-
munication handling; it is inefficient that each application
has redundant features, especially in hardware with limited
capability. Furthermore, as the ITS station reference architec-
ture accepts multiple access technologies and communication
protocols, it is burdensome to support all of them in each
application. A solution is to static configuration: exclusively
use a certain type of protocol, however, it prevents to adapt
dynamic mobile networks.

On the other hand, in the latter solution, most common
functions are supported in the Facilities layer. Redundant
development are minimized so that applications can concen-
trate on their specific task. Moreover, applications do not
need to take care the diversity of the access technologies
and communication protocols, because it is also handled by
facilities layer services. Thanks to its efficiency of develop-
ment and the adaptability of ITS standards, we adopt the
facility layer solution to implement the proposed application,

as depicted in Figure 2. The following sections detail the
relevant components and their interaction.

Communications

Applications

Facilities

Networking & Transport

NF-SAP

Management

API

Application

HMI

CPH

PositioningSME

GMDH

LDM

Fig. 2. Selected system architecture in compliance with the ITS-S reference
architecture with the 5 conceptual components: Positioning, Communication
Profile Handler (CPH), Generic Message Distribution Handler (GMDH),
System Management Entity (SME) and the Local Dynamic Map (LDM).

C. Application

The application is composed of its main logic and Human
Machine Interface; for this reason, it belongs the Application
horizontal entity from ISO 21217. When the application is
started, it requests position information to Positioning entity.
Once the position is received, the application shows it on a
graphical user interface (map) and communicates with Com-
munication profile handler to send the Application Data Unit,
which contains device’s current position, timestamp, accuracy
and its identifier.

D. Facilities and Management

As described previously, we implement five conceptual
components in the Facilities layer and Management entity:
Positioning, Communication Profile Handler, Generic Message
Distribution Handler, System Management Entity, and Local
Dynamic Map:

Positioning is an entity to process the device’s position
information. This entity provides application and information
supports, for this reason it belongs to the Facilities layer. It
complies to the ITS standards as a data source for Local
dynamic map and Application, abstracting this entities from the
diversity of the source of position (GPS, static configuration
file, CAN Network, Internet, etc.). This way, these entities do
not need to take care each data sources.

Communication Profile Handler (CPH) based on the ISO
17429 [10], it enables applications to abstract the diversity
of communications. With this component, applications can
transparently use multiple communication protocols and ac-
cess technologies. Only applications need to do is to register
their communication requirements, the type of communication,
destination, quality, priority, etc. This communication require-
ment is mapped to each application, and then Communication

profile handler configures the underlying communication stack
to satisfy the requirement.

Generic Message Distribution Handler (GMDH), based
on the ISO 17429 [10], it is used to share a specific message
among multiple applications by means of the publish/subscribe
scheme. This scheme enables the push-based commutation,
in which each receiver application subscribes a certain type
of message while sender application publishes any message
regardless of the presence of receiver. The message is deliv-
ered only when there are applications that subscribe to this
message. We implement Generic message distribution handler
to exploit its publish/subscribe mechanism for supporting
information sharing and discovery.

System Management Entity (SME) this entity can be
used by all entities. It enables cross-layer services by stor-
ing information from any communication layers [7]. In this
paper, we implement System management entity to manage
the communication profile as described by ISO 17423 [8].

Local Dynamic Map (LDM) is a database containing
static maps, static information not yet part of the above maps,
temporary and dynamic information and dynamic information
concerning moving objects as defined by ETSI [12]. In this
paper, we implement Local dynamic map as a data store of
the position information, which can be requested by other
applications. As described above, the position information is
provided by the Positioning entity.

E. Interaction model

The proposed application and facilities communicate in
compliance with the following operational steps: flow assign-
ment, position management, message transmission, message
reception, and user interaction.

In the flow assignment operation, the application presents
its communication requirements to System management entity,
then it generates and returns a FlowTypeID, an identifier to
map the application to communication requirement [8] [13].
When the application wants to send messages, it registers the
destination with previously-assigned FlowTypeID to Commu-
nication profile handler, which configure an appropriate com-
munication stack and generates/replies a FlowID (an identifier
of communication flow mapped to the application), its commu-
nication requirement, and destination. To transmits messages,
the application passes message body to Communication profile
handler with FlowID. The flow assignment is depicted in
Figure 3.

To perform the position management operation, the applica-
tion at first establishes connection with the Positioning entity,
and then obtain the device’s current position at any time. The
Positioning entity also performs the flow type registration and
flow registration as an application, because application may
access the positioning entity in the remote host.

Once the Positioning is started, it communicates with Local
dynamic map to search possible position information previ-
ously stored. If there is no position information, Positioning
communicates with GPS to get them and store this position on

Application SME CPH

Register flow

FlowID

Register FlowType

FlowTypeID

FlowType information

Request FlowType info.

Fig. 3. Flow Assignment.

the Local dynamic map. In this paper, Positioning and Local
dynamic map were specified as a pair of separate functions.

Once FlowID is assigned, the application sends its current
position obtained from the above operation. In contrast to us-
ing traditional socket APIs, the application passes Application
Data Unit (ADU) to Communication Profile Handler (CPH)
with FlowID, then it publishes Application data unit to a
specific destination. Figure 4 shows the message transmission
operation. For the proposed application, the destination is
single-hop broadcast.

Application CPH

publish ADU

Networking &

Transport

send Facilities layer PDU send packets

SME

get Flow Information

Flow information

Fig. 4. Application Data Unit Transmission.

To receive location information, each application subscribes
this message to Generic message distribution handler, then it
distributes the message to applications only when the corre-
sponding message is received. This communication follows
the passive, push-based manner.

The application interacts with users via human machine
interface to display its own location and the nearby mobile
devices’ location.

IV. IMPLEMENTATION

All the components are implemented using Android Soft-
ware Development Kit (SDK), targeted to Android 4.0 or later.
The application is a set of foreground Android activities, while
the Facilities layer and Management entity components are An-
droid services, application-independent background processes.
To get position information, device’s built-in GPS is used via
Google play services library. As a Human-machine interface,

we use Google Map. Wi-Fi direct [14] is used for device-to-
device direct communication.

A. Boundary of entities

Local dynamic map and Positioning are implemented as
two independent Android services, while System management
entity, Communication profile handler and Generic message
distribution handler are a single service; because these three
entities are dedicated for communication, we coupled them
for performance reason (data can be more directly accessed
among the entities). Note that such a decision, i.e., coupling
the conceptual entities, does not affect the compliance to the
standards: the definition of the entities in the standards are
conceptual, therefore, how to couple the functions are devel-
opers’ choice as long as it is compliant to the standardized
interfaces.

Since each entity is stand-alone process, the interaction
among the application and each component is performed as
Inter-process-communication using Android Interface Defini-
tion Language (AIDL) [15]. This way, each facility provides
APIs to uses as AIDL interface file; then, the users transpar-
ently use the provided functions via APIs without considering
the inter-process-communication.

B. Communication

Although the traditional way to share information between
devices is indirect communication using centralized hosts,
we chose the device-to-device direct communication without
servers because the intended scenario is transient commu-
nication among nearby pedestrians (mobile devices) which
only requires single-hop broadcast. For this reason, Android’s
built-in Wi-Fi direct (called Wi-Fi Peer-to-Peer in Android),
which enables to discover and connect to other devices, is
used. The manipulation of Wi-Fi direct is implemented in the
Communication profile handler/Generic message distribution
handler service.

Regarding the flow assignment, in the current implementa-
tion, we introduce some experimental well-known FlowTypes:
statically configured communication requirements stored in
the local storage, i.e., the type of transport layer protocols
and source/destination address and port number. These static
settings are loaded when the Communication profile handler
service is started, and then users specify one of the requirement
by FlowTypeID (assuming well-known FlowTypes are publicly
available a priori).

C. Application Programming Interface (API)

Each component provides a number of APIs to interact with
applications. Positioning provides

messengerToServicePositioning.send(msg)

which returns the current position, where msg is an Android’s
Message object for inter-process communication, which con-
tains description of the request from applications, such as the
type of request and application’s Identifier.

To manage position, Local Dynamic Map provides
messengerToServiceLDM.send(msgToLDM)

which stores or returns position requested by Positioning
entity, where msgToLDM is an object containing request
description, such as the type of request and ITS station’s
Identifier.

On the other hand, to send Application data unit, Commu-
nication Profile Handler provides:

publish(int flowId, List messageIds,
byte[] adu)

where flowId is an identifier of a destination mapped with
communication requirements, messageIds and adu is the
type and serialized sequence of bytes of Application data unit.
How to encode and decode adu is application’s responsibility.

D. Message format

The Application data unit object is composed of
latitude, longitude, accuracy, timestamps and
stationID attributes. To efficiently exchange data between
devices, Application data unit is formatted, encoded and
decoded according to ASN.1. We use BinaryNotes [16], an
open source ASN.1 framework, to encode and decode the
Application data unit.

E. Initial demonstration

We installed the application and services into three Android
tablets (Samsung Galaxy Tab 10.1 GT-P5100, Android 4.1.2).
Initial demonstrations have been performed using these de-
vices, and shown each device properly exchanges its location
information. Figure 5 shows the screenshot of the application
displaying the location of neighboring devices.

Fig. 5. Application’s user interface displaying two neighbors.

In Figure 5, the device’s own location is identified by
Station ID 1, while the nearby nodes’ locations are 2 and
3, respectively.

V. DISCUSSION

This paper demonstrated how conceptual entities defined
by ITS standards can be implemented. As the ITS standards
describe a framework to develop ITS applications, in this
paper, we proposed a simple application to evaluate how
applications and the underlying functions can be implemented,

and also their interactions. This section describes practical
consideration of the implementation of ITS standard, and
issues of ITS applications on Android.

Because standards describe minimum sets of essential
features for interoperability, we have studied a number of
design choices. A main choice is how to integrate a wide
variety of conceptual elements in the standards into actual
implementation. A simple solution is to make a single self-
contained software component, while the other way is to
actually separate each entities. In other words, it is the choice
of single binary or multiple modules. In general, the former
solution is superior in terms of performance: if we couple
all conceptual entities into a single component, the interface
between the entities are much simpler. However, this solution
lacks extensibility and is difficult to maintain, specifically if
it is developed by multiple stakeholders. In other words, the
modular solution is efficient in terms of interoperability. The
important design choice in this solution is the granularity of
modules: implementing each conceptual module to exactly one
component may need redundant interaction. The number of
stakeholders and capability of target devices, therefore, should
be carefully considered.

We used Android’s WI-FI Direct for device-to-device di-
rect communication; however, during the demonstration, we
observed weaknesses of this technology: whenever a device
is detected by other Wi-Fi Direct enabled devices, it requires
users’ interaction (a confirmation box is pop-upped and users
need to tap the button to accept connection for each device).
Although it is secure to prevent unwanted silent connections
from unknown devices, it cannot be used by ITS applications
which needs quick and automatic/silent connection establish-
ment. It is necessary to investigate the way of secure ad-hoc
communication without users’ interaction.

In this paper, our first application did not concern privacy
issues as specified by [7]. Since, identity information, such
as a pair of device/application/user identifier and its position,
should not be unnecessarily broadcasted over the air; as a next
step it is necessary to integrate ITS security related functions
e.g., authentication and encryption.

VI. CONCLUSION AND FUTURE WORK

Cooperative Intelligent Transportation Systems is an in-
creasingly important topic to enhance our stressed transporta-
tion systems and address some safety and efficiency problems.
Based on the Internet OSI layered model, transportation and
communication communities are designing a modular architec-
ture intended to be deployed soon. Standards are being written
and this will hopefully ensure interoperability of very different
systems. The goal of this paper is to share the knowledge
we got from the design and implementation of a simple
application compliant with theses new ITS standards. We have
shown that there are some challenges in the organization of
the modules and the concepts associated. Since this is true
for a very basic application, we expect more problems when
real applications will be implemented, especially for safety
critical applications. There is a clear need for clarification of

the concepts and module to be used and this papers intends
to pave the way in that direction.

However, these difficulties should not elude the most im-
portant result of our work: it is possible — and finally, not
that difficult, if carefully handled — to implement a Cooper-
ative ITS application using the best of the modular approach
described in the standards. This validates the standardization
effort. The direction is promising and need more exploration.
Some directions are clearly shown by this paper: imagine a set
of applications sharing the same services of the Facilities layer;
refine conceptually the 5 components we introduced so that
more applications can exploit them maybe introducing addi-
tional components; tackle the issues of the platform functions
needed for ITS applications (Android had some drawbacks;
but, is a platform to address, at least for pedestrians). Moreover
other functions provided by standards are to be carefully linked
to ITS application: encryption, privacy, etc. We hope to see in
the near future more and more works describing how to best
deploy the promising Cooperative ITS architecture.

REFERENCES

[1] R. Michoud, A. M. Orozco, and G. Llano, “Mobile ad-hoc routing
protocols survey for the design of VANET applications,” Intelligent
Transportation Systems Symposium (CITSS), 2012 IEEE Colombian,
pp. 1 – 6, 2012.

[2] P. Muhlethaler, Y. Toor, A. Laouiti, and A. de La Fortelle, “Ve-
hicle ad hoc networks: applications and related technical issues,”
IEEE Communications Surveys and Tutorials, vol. 10, no. 3, pp.
74–88, Quarter 2008, URL: http://ieeexplore.ieee.org/xpls/abs all.jsp?
isnumber=4625798&arnumber=4625806&count=7&index=6 [accessed:
June 2014].

[3] P. Papadimitratos, A. de La Fortelle, K. Evenssen, R. Brignolo, and
S. Cosenza, “Vehicular communication systems: Enabling technologies,
applications, and future outlook on intelligent transportation,” Commu-
nications Magazine, IEEE, vol. 47, no. 11, pp. 84–95, November 2009.

[4] “IPv6 ITS Station Stack (ITSSv6) European project,” URL: https:
//project.inria.fr/itssv6/ [accessed: June 2014].

[5] “Drive C2X European project,” URL: http://www.drive-c2x.eu [ac-
cessed: June 2014].

[6] “Cooperative Vehicle-Infrastructure Systems (CVIS) European project,”
URL: http://www.cvisproject.org/ [accessed: June 2014].

[7] “ISO 21217:2014 Intelligent transport systems - Communications access
for land mobiles (CALM) - Architecture,” March 2014.

[8] “ISO/DTS 17423 Intelligent transport systems - Cooperative systems -
ITS application requirements for automatic selection of communication
interfaces,” February 2013.

[9] “ISO/DTS 17419 Intelligent transport systems - Cooperative systems -
Classification and management of ITS applications in a global context,”
February 2013.

[10] “ISO/NP 17429 Intelligent transport systems - Cooperative systems -
Profiles for processing and transfer of information between ITS stations
for applications related to transport infrastructure management, control
and guidance,” December 2012.

[11] “ISO 24102-3:2013 Intelligent transport systems - Communications
access for land mobiles (CALM) - ITS station management - Part 3:
Service access points,” June 2013.

[12] “ETSI TR 102 893 V.1.1.1 Intelligent Transport Systems (ITS) - Security
- Threat, Vulnerability and Risk Analysis (TVRA),” March 2010.

[13] “ISO 24102-1:2013 Intelligent transport systems - Communications
access for land mobiles (CALM) - ITS station management - Part 1:
Local management,” June 2013.

[14] Wi-Fi Alliance, “Wi-Fi Direct,” URL: http://www.wi-fi.org/
discover-wi-fi/wi-fi-direct [accessed: May 2014].

[15] “Android Interface Definition Language (AIDL),” URL: http://developer.
android.com/guide/components/aidl.html [accessed: June 2014].

[16] “BinaryNotes :: ASN.1 framework,” URL: http://bnotes.sourceforge.net/
[accessed: May 2014].

