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Michel Bilodeau

Morphological Co-Processing Unit for Embedded Devices

February 4, 2015

Abstract This paper focuses on the development of a fully
programmable morphological coprocessor for embedded de-
vices. It is a well-known fact that the majority of morpho-
logical processing operations are composed of a (potentially
large) number of sequential elementary operators. At the
same time, the industrial context induces a high demand
on robustness and decision liability that makes the appli-
cation even more demanding. Recent stationary platforms
(PC, GPU, clusters) no more represent a computational bot-
tleneck in real-time vision or image processing applications.
However, in embedded solutions such applications still hit
computational limits.

The Morphological Co-Processing Unit (MCPU) replies
to this demand. It combines the previously published effi-
cient dilation and erosion units with geodesic units to sup-
port a larger collection of morphological operations, from a
simple dilation to a pattern spectrum by reconstruction.

The coprocessor has been integrated into a FPGA plat-
form running a server, able to respond client’s requests over
the ethernet. The experimental performance of the MCPU
measured on a wide set of operations brings as results in or-
ders of magnitude better than another embedded platform an
ARM A9 quad-core processor.
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1 Introduction

Mathematical morphology is an image processing frame-
work providing a complete set of tools for filtering, multi-
scale image analysis, or pattern recognition. It is used in a
number of applications, including biomedical and medical
imaging, video surveillance, industrial control, video com-
pression, stereology or remote sensing since its very first ap-
pearance in the late 1960’s, see [18, 24–26].

Considering the hardware implementation context, sev-
eral different trends have been observed. A recent technolog-
ical advance of imaging sensors stimulated the development
of applications by means of high-resolution images that be-
came a standard. Needless to say large images impose chal-
lenging requirements on the computation platform in terms
of both performance and memory.

On the other hand, the industrial context often induces
severe real-time constraints on applications. Often these de-
manding image-interpretation applications require a high
correct-decision liability, robust but costly multi-criteria
and/or multi-scale analyses are used. Given that image pro-
cessing should not deteriorate industrial productivity, the la-
tency and computational performance are of high interest in
this context.

In embedded systems, the most important concerns are
low power consumption (and consequently low heat dissipa-
tion) and small resources occupation, which allows for better
embedding. All these considerations combined together in-
fer overwhelming requirements on the architecture of poly-
valent processing units addressing many different contexts.
The context of embedded morphology applications includes,
for instance, an augmented vision system that improves vi-
sual perception [10], or smart cameras [13].

The paper is organized as follows: Section 2 makes a
short survey of existing morphological algorithms and archi-
tectures. Section 3 outlines the basic definitions of typical
mathematical morphology operations. Section 4 describes
how these operations can be efficiently computed by pro-
cessing pipelines and describes the architecture of the pro-
posed coprocessor. The following Section 5 covers the pro-
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grammability and user interface to the coprocessor server.
Finally, Section 6 presents experimental results obtained on
an FPGA board and compares them to an ARM A9 embed-
ded platform.

2 State of the art

This section briefly presents the state of the art algorithms
for elementary morphology operations dilation and erosion
and their hardware implementations in FPGA. The last part
discusses the novelty and main contributions of this paper.

2.1 Algorithms

The simplest method to compute a dilation is the exhaustive
search for maximum in the scope of SE B according to the
definition below in Eq. 1. This naive solution tends to need a
large number of comparisons, which are on most platforms
diadic (with two operands). The number of comparisons is
considered as a metric of algorithm complexity, so the naive
algorithm has complexity O(l) as it has to carry out l−1
comparisons for a SE containing l pixels. Such complexity
suggests that the naive algorithm is inefficient for large SEs.
Pecht [22] proposed a method to decrease the complexity
based on the logarithmic SE decomposition, thereby achiev-
ing O(dlog2(l)e) complexity.

The first 1-D algorithm that reduced complexity to a con-
stant is often referred to as HGW (it was published simul-
taneously in two papers: van Herk [31], and Gil and Wer-
man [12]). The computation complexity is constant, i.e., of
O(1), which means the upper bound of the computation time
is independent of the SE size. Gil [11] proposed an improved
version of HGW that lowered the number of comparisons
per element, but at the cost of increased memory usage and
implementation complexity.

Lemire [15] proposed a fast stream algorithm ofO(1) for
causal line SEs. This algorithm uses two queues of length
l in order to store the pixels that form locally monotonous
signal (i.e., monotonously increasing and decreasing). Al-
though it produces both erosion and dilation simultaneously,
it works with causal SEs only. This downside was solved
later by Dokladal [8] who proposed another queue-based al-
gorithm. The advantages of these queue-based algorithms
are strictly sequential access to data, zero latency, and low
memory requirements.

The 2-D dilation is usually obtained by composition of
1-D dilations, see for instance Soille [28] who approximates
circle and polygon SEs using rotated line SEs. However,
this technique covers only a limited family of shapes. The
arbitrary-shaped SE are obtained by either more complex
2-D algorithms (e.g., Urbach [30]), which are suitable for
general-purpose processors, or by fine-grained decomposi-
tion of the large SE into a set of small 2-D SEs. Xu [34] pro-
posed that any 8-convex polygon (convex on 8-connectivity
grid, hence 8-convex) is decomposable into a class of 13

nontrivial indecomposable convex polygonal SEs. Normand
[20] reduced the class of shapes to only four 2-pixel SEs by
allowing the union operator to take place in the SE decom-
position.

2.2 Hardware implementations

One of the first morphology architectures was the texture
analyzer by Klein [14]. It was optimized for linear and rect-
angular SE by decomposition into line segments. More re-
cently, Velten [32] proposed another, delay-line based archi-
tecture for binary images supporting arbitrarily shaped 3×3
SEs. The computation of dilation is realized by OR gates
(topology was not communicated, probably a tree of diadic
OR gates) achieving good performance, which was further
improved by spatial parallelism.

Clienti [4] proposed a highly parallel morphological
System-on-Chip. It is a set of neighborhood processors opti-
mized for arbitrarily shaped 3×3 SE interconnected in a par-
tially configurable pipeline. Each stage of the pipeline con-
tains 2 processors that can process 2 parallel image streams
and an ALU. The reconfiguration allows all the processors
to be connected in one chain in order to employ all proces-
sors when only one image stream is used. A reconfigurable
3x3 neighborhood morpho processor was recently used in
Gibson [10] in a hand-held augmented-vision system for vi-
sually impaired.

Another approach is called partial-result reuse (PRR).
The morphological operation by some neighborhood B1 in
an early stage is delayed by delay lines in order to be reused
later in computation by some other neighborhoodB2 obtain-
ing larger B3 decreasing thus the number of necessary com-
parisons. One of the first PRR architectures for 1-D dilation
was proposed in [23] and improved in [6]. The principle is
based on an exponential growth of the intermediate neigh-
borhoods in the partial-result reuse scheme.

Chien [3] presented more general concept of PRR that
builds the desired SE by a set of distinct partial neighbor-
hoods computed by a dedicated algorithm. As a result, it
supports arbitrary 8-convex polygon at the cost of some ad-
ditional comparisons.

A similar approach has been published by Déforges [7].
Based on the [20] SE decomposition (a SE is decomposed
into a number of causal 2-pixel SEs, which are applied in
sequence or in parallel and combined with a stream imple-
mentation, the authors proposed a methodology for pipeline
architecture design supporting arbitrary convex SEs.

Recently, Torres-Huitzil [29] designed a linear systolic-
like array of processing elements without need for delay-
line internal memory storage supporting non-rectangular flat
SEs. However, prospective drawbacks can be seen in the
chosen column-based image scan requiring significant im-
age storage capability, and the need of deep parallelism to
attain real-time performance even for the mentioned 7×7
SE.

The last method mentioned in this overview is the im-
plementation of efficient 1-D algorithms. To our knowledge,
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there are only few such contributions in the literature. Cli-
enti [5] published architectures for the 1-D Lemonier algo-
rithm [16] and the HGW algorithm. Both architectures how-
ever suffers from the necessity of forward and reverse image
scans imposed by algorithms, which increases memory re-
quirements by additional buffers.

Recently, Bartovsky [1] proposed implementation of the
Dokladal algorithm [8] as a processing unit by polygonal
SEs with a strictly sequential access to data and small mem-
ory requirements. This architecture is mainly beneficial for
large SEs because only the memory varies with the size of
the SE, the computation logic remains the same.

3 Basic notions

This section describes the operators used in this paper. We
are mainly interested in compound operators composed as
concatenations of elementary operators, that are therefore
costly on sequential machines.

Let δB , εB: Z2 → R be a dilation and an erosion on
gray-scale images, parameterized by a structuring element
B, assumed to be flat (i.e., B⊂Z2) and translation-invariant,
defined as [24, 27]

δB(f) =
∨
b∈B

fb ; εB(f) =
∧
b∈B̂

fb (1)

where fb denotes translation of f by b. The hat ̂ denotes
the transposition of B, equal to the set reflection B̂ = {x |
−x ∈ B}.

The concatenation of dilation and erosion forms other
morphological operators. The closing and opening on gray-
scale images, ϕB , γB: Z2 → R, parameterized by a structur-
ing element B, are defined as

ϕB(f) = εB [δB(f)] ; γB(f) = δB [εB(f)] (2)

Closing and opening are filters. Their concatenation
forms alternating filters γϕ, ϕγ, γϕγ and ϕγϕ. Other fil-
ters can be obtained by combining families of filters. A well
known example is the alternating sequential filter (ASF),
composed as sequence of closings and openings with a pro-
gressively increasing SE λB, with λ > 0. Let γλ and ϕλ
denote the change of scale such as γλB and ϕλB . Then λ-
order ASF (referred to as ASFλ) is composed as

ASFλ = ϕλγλϕλ−1γλ−1 . . . ϕ1γ1 (3)

starting with opening, and

ASFλ = γλϕλγλ−1ϕλ−1 . . . γ1ϕ1 (4)

starting with closing.
Let δf : Z2 → R be an elementary geodesic dilation of

image g (marker) “under” image f (mask) where g ≤ f ,
such as [33]

δf (g) = f ∧ δ3×3(g) (5)

Repeating δf (f) until stability represents the dilation-
reconstruction of g under f ; g ≤ f ,

ρf (g) = δfδf . . . δf︸ ︷︷ ︸
x times

(g) (6)

the number of iterations x=∞ by definition, and practically
until the idempotence. The marker image g is commonly ob-
tained by morphological opening γB . In this case, the oper-
ation is called opening by reconstruction γρB , defined as

γρB(f) = ρf (γB(f)) (7)

Let {γλi}, with λi > λi−1 and with λi > 0, ∀i be a col-
lection of openings, generating a size distribution aka gran-
ulometric function (see Matherons’ axioms, [18] p. 192) us-
ing some measure, e.g. integral (or sum) of the image. One
also often uses its derivative, so called granulometric or pat-
tern spectrum, defined as

PSλjB(f) =
∑
D

(
γλiBf − γλjBf

)
(8)

with D = spt(f). Notice, that instead of opening γλiB one
also may want to use the opening by reconstruction γρλiB
which even more increases the computation cost.

4 Hardware architecture

This section describes the hardware architecture of the
proposed morphological coprocessor that efficiently im-
plements the aforementioned sequential, costly operators.
The following description follows the bottom-up approach,
so we start with developing two basic image processing
pipelines, one for large SE operators, and one for geodesic
operators. Then we build the processing core by surrounding
these two pipelines with interconnection busses, configura-
tion registers, and image buffers in such way that it can be
used as a peripheral of the Xilinx MicroBlaze. Finally, we
describe the top-level architecture of the FPGA evaluation
platform.

4.1 Large SE Pipeline

Let us begin with the description of the Large SE pipeline.
One of the most penalizing aspects in morphological op-

erators is the number of iteration on an image. On sequen-
tial platforms, this induces an intensive traffic between the
CPU and the memory. An important efficiency can be ob-
tained when such iterations can be pipelined. This idea is
used in Clienti [5]. However, given that its pipeline is only
composed of 3×3 blocks it lacks flexibility and must be re-
configured to precisely fit application needs.

In this paper, in order to gain in flexibility we propose
two parallel pipelines of programmable large-size SE units.
To efficiently execute the largest collection of operators (in-
cluding those with two parallel branches, such as top hat or
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Fig. 1 Large SE pipeline architecture.

gradient) the pipelines are interconnected by programmable
ALUs (Arithmetic Logic Unit), see Fig. 1.

Either pipeline contains several identical parts called
processing stages connected one after the other. The pipeline
is scalable by means of the number of instantiated stages,
which is hereafter denoted as n. A common number for
Virtex-5 FPGA may be 4 to 5. The heart of each stage is
a pair of Large SE erosion/dilation units. The output of both
units can be connected to the ALU, or directly to the next
stage through the Mux {1,2} multiplexer. The ALU result
can be routed to either input port of the next stage (or both.

The Large SE erosion/dilation unit performs one mor-
phological dilation or erosion by a flat rectangular or octag-
onal SE of programmable size (up to 31 pixels in diameter
for rectangles and 43 pixels in diameter for octagons) and the
position of the origin. This unit takes advantage of separa-
bility of 2-D rectangular and octagonal SEs into a sequence
of 1-D SEs. The 1-D dilation is then computed by a queue-
based algorithm [8], the FPGA implementation of which has
been proven to be beneficial for high-demanding image pro-
cessing with large SEs. The description of the FPGA archi-
tecture and experimental results can be found in [2] for rect-
angle SEs, and [1] for octagon SEs, respectively.

The previously published results can be summarized as
follows. The Large SE unit computes 2-D rectangular or
octagonal erosion/dilation during a single horizontal image
scan with minimal latency. The experimentally obtained av-
erage processing rate is approximately 2.5 clock cycles per
pixel, i.e., approx. 50 Mpx/s at 125 MHz clock frequency.
The memory requirement is another important parameter of
an image processing implementation because it limits the
number of units that fit the FPGA. The most significant
memory requirement of the Large SE unit is given by the
set of queues, such as

R = NH × (bpp+ dlog2(H − 1)e) [bits] (9)

where N denotes image width, H the height of the SE, bpp
the number of bits per pixel, and d.e the ceiling operation.
For example, let N = 1024 px, H = 31 px, and bpp = 8
bits. The memory requirement is then

R = 31744× 13 [bits] (10)

The dilation/erosion computation can be turned off by a
bypass feature. Then the computation memory changes into
a large FIFO buffer that can be used to synchronize data-
flows in two-channel operations, such as top-hat, gradient
etc.

The ALU performs simple arithmetic operations of two
pixels, each of which can be configured as either ALU input
image streams or a programmable constant. The supported
operations are as follows: no operation; negation (logical
complement); bit-wise AND, OR, XOR; saturated addition,
subtraction; infimum and supremum. In order to ensure that
the ALU has both input pixels at the same coordinates in re-
spective images, the both image streams have to be synchro-
nized within some tolerance provided by FIFO memories. In
the case that either FIFO is empty, the ALU is stalled.

The Measurement unit computes simple metrics of the
whole image, namely the sum, infimum, and supremum.
This measurement is useful in image analysis applications,
such as pattern spectrum, and can be obtained on-the-fly at a
low cost. The measurement results can be read out through
the configuration registers.

All programmable parameters including the SE dimen-
sions, operation, multiplexers and ALU settings, as well as
measurement results, are stored in a bank of per-stage con-
figuration registers.

4.2 Geodesic pipeline

A significant subset of morphological operators relies on the
reconstruction using the geodesic dilation/erosion by 3 × 3
SE. Even though the Large SE pipeline supports geodesic
operations, using it would be inefficient. A better solution is
to devise a dedicated Geodesic pipeline, see Fig. 2.

This Geodesic pipeline contains several equal stages
connected one after another. The pipeline is scalable by
means of the number of stages instantiated, which is here-
after denoted as m (e.g., m = 16 for Virtex 5). The heart of
each stage is a 3×3 erosion/dilation unit. The output of this
unit is connected to the ALU, along with the buffered Mask
image. The ALU result is the Marker input of the next stage.

The 3×3 dilation is outlined in Fig. 3. It also takes ad-
vantage of separability of the rectangle into the horizontal
and vertical segments, which are implemented using a well-
known approach of delay elements (registers T for hori-
zontal segment, and line buffers xT for vertical segments)
and comparators. This approach is suitable for small-sized
SEs and delivers better FPGA area and performance results
than the queue-based architecture (which are better for large
SEs).

The ALU is the same as described above. The reason
for the Line buffer is to synchronize the Mask image and
the dilated Marker image, which is delayed by N+1 pixels
(recall N is the width of the image).

4.3 Morphological Co-Processor Unit (MCPU) Schematics

The MCPU architecture in Fig. 4 is composed of the
two processing pipelines surrounded by a set of image
stream routing multiplexers, configuration registers, and im-
age buffers. The multiplexers allow two input and two output
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image streams to be routed to the pipelines in different con-
figurations (serial, parallel, see Fig. 6) as described later in
Sec. 5.

The configuration registers store the necessary config-
uration for all the processing units in both pipelines, the
global control, and measurement results. Notice that there
is one bank of registers for each stage of the processing
pipelines.

Image data are transferred by 4 VFBC channels, two
VFBC channels are dedicated to reading input image data
from the DDR2 memory, and other two for writing the out-

put image data to the DDR2 memory. The image transfers
are independent of each other, so the processing can run
in-place (the output image is written in place of the input
image). The VFBC allows us to read and/or write image
data to the DDR memory with a FIFO-like data-flow control
(full, almost full, empty, almost empty flags), so the data
stream can be stalled by either endpoint if necessary. The
image data in both directions are buffered in Input or Output
buffers, respectively.

The MCPU is intended to be used as a peripheral in a
higher-level environment. We have tested it as a peripheral
of the Xilinx MicroBlaze as described in the following sec-
tion.

4.4 Top-level architecture

An example of a top-level architecture, we have built for
evaluation purposes, is outlined in Fig. 5. The proposed
MCPU is a coprocessor running as a peripheral of the Mi-
croBlaze CPU synthesized on a Virtex 5 development plat-
form. This platform is also provided with an ethernet link.
The architecture consists of two main parts: (i) the MCPU
core, and (ii) the MicroBlaze processor environment.

This platform plays several roles: i) the MicroBlaze con-
figures and sends operators to MCPU to execute, ii) provides
working memory storage capacity, and iii) handles the com-
munication with the outside world.

A very important aspect of every image processing plat-
form is the memory for storing images; either input, output,
or intermediate result. The MCPU uses the Xilinx propri-
etary Multi-Port Memory Controller MPMC that provides a
multi-port interface to a high-capacity off-chip DDR2 mem-
ory. The MPMC is capable of handling 4 simultaneous im-



6

TEMAC

DDR2

memory

512 MB

PHY PC client

GPIOInterruptTimer

MPMC

Micro-

Blaze

Processing 

pipelines

Con�guration registers

Morphological Co-Processor Unit

Virtex 5 FPGA

Development platform HTG-V5-PCIE2

vfbc1

vfbc3

vfbc2

vfbc4

sdma

plb

Image 

bu!ers

Fig. 5 Overall Platform architecture. Black line denotes image data
transfers, grey line denotes configuration and control.

age data streams of approx. 50 Mpx/s each that are required
by the processing core to sustain the maximal performance.

The MicroBlaze processor uses the Peripheral Local Bus
(PLB) to control all the peripherals and to transfer the con-
figuration data, which are small in size, among the peripher-
als.

5 User interface - programmability

The platform can be accessed via a tri-speed Ethernet inter-
face using either TCP/IP or UDP/IP protocols (implemented
as lightweight lwIp). The MCPU runs a server able to accept
images and operations to execute via the ethernet link from
a superior client.

In order to achieve a proper function of the MCPU
server, the client has to manage the following tasks: com-
municate properly with MicroBlaze, send the image data,
configure and run the processing core, read the results. The
low-level implementation of these tasks being cumbersome,
we have provided MCPU with C++ and Python interface (in-
tegrated in MorphM [19]). The interface contains two con-
figuration approaches: (i) high-level, and (ii) low-level. The
high-level configuration (built on the top of the low-level
approach) provides more intuitive way to perform common
morphological operators. The low-level configuration allows
advanced users to better fit unusual applications to the pro-
cessing pipeline. In the rest of this paper, we will discuss the
high-level configuration only.

The list of supported operators includes dilation, erosion,
opening, closing, reconstruction, opening and closing by re-
construction, top hat, gradient, ASFλ, pattern spectrum, and
pattern spectrum by reconstruction. All these operators pro-
ceed in the following steps: send the image (if necessary),
calculate the configuration based on the passed arguments
(either SE or λ), execute the processing pipelines, and read
the output image and/or measurement results. Notice that
operators with large values of SE or λ may not fit into the
pipelines. In this case, several iteration are automatically ex-

ecuted. This is especially true for the reconstruction that may
need hundreds of iterations.

The configuration encompasses: i) the configuration of
processing units (namely the SE size and the operator) and
ii) the interconnection using global and pipeline multiplex-
ers. All operators can use one from the following 4 typical
interconnection patterns depicted in Fig. 6. The most fre-
quently used interconnection pattern is the one in Fig. 6(b)
that connects all the Large SE units into a single long
pipeline, which allows for very long concatenations of ero-
sions and dilations in a single run.

5.1 Example: pattern spectrum

In this section, we show how the pattern spectrum operator
is executed by the MCPU. The pattern spectrum PSλB is
a derivative of the granulometric function parameterized by
the size λ and by the shape of the SE B, see Eq. 8. The sin-
gle PSλB suggests that number of increasing-size openings
on the input image are required. However, according to the
absorption law of filters (that obviously apply to openings)

γk = γkγl; k > l > 0, (11)

it is not necessary to compute each opening from the input
image, as in Eq. 8. Instead, we can use the result of a pre-
vious opening. This allows chaining all large SE units into
an efficient pipeline computing a number of openings at the
same time during a single (or a few) image scans. Another
advantage, over the pipeline of elementary dilation/erosion
blocks (as e.g. in [4]), is the possibility of programming di-
rectly the sizes of the openings in the sequence since gran-
ulometries are often computed for application-specific, cho-
sen values.

Figure 7 shows an example of execution of PSλB for
n = 4, λ = 9. Using the pipeline interconnection pat-
tern, all 8 processing units are connected into a single chain.
Considering that each unit supports SE up to 31×31, each
opening requires just two processing units. Hence the pro-
cessing executes 4 openings by increasing SE size, from
3 × 3 to 9 × 9, during the first iteration. When the com-
putation is done, the sum measurement results from the
even units represent the granulometric distribution function∑

(γkB(f)); k = {1, 2, 3, 4}. These values are retrieved and
stored by the MicroBlaze. The other openings, from 11× 11
to 19 × 19, are computed during the second iteration. The
resulting PSλB is obtained as by differentiation (subtraction
two by two) of the granulometric distribution.

6 Experimental results

The proposed MCPU architecture has been implemented in
VHDL and targeted to the Xilinx FPGA Virtex-5 develop-
ment platform (XC5SLX95T) for demonstration purposes.
Two different setups were implemented with such parame-
ters to fully utilize the available FPGA resources and keep
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Fig. 6 Interconnection patterns of the Large SE and Geodesic pipelines.
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Fig. 7 Execution of the pattern spectrum operator, given λ = 9, n = 4

high flexibility at the same time. The implementation results
and setup specification are outlined in Table 1.

Table 1 Implementation results

Parameter Setup 1 Setup 2
Supported SE per unit Rectangle 31× 31 Octagon 43× 43

Large SE stages n 5 4
Geodesic stages m 16 16

Image width N 1024 1000
FPGA Slice 13534 14684

FPGA BRAM 233 243
Clock frequency 125 MHz 125 MHz

We compare the performance of the proposed archi-
tecture against another embedded solution, an ARM pro-
cessor. In our case, we use the Sabre platform [9] by
Freescale, which can be seen as another example of hand-
held platform. The Sabre uses quad-core ARM A9 proces-
sor at 1GHz, 1GB of DDR3 memory up to 533MHz, and

runs Linux with TCP/IP stack. We have created the bench-
marks for two image processing libraries: (i) the well-known
OpenCV [21], and (ii) more efficient Smil [17]. For the sake
of completeness, we have also included the single-thread
results of the OpenCV at desktop PC Intel Xeon running
Linux.

The benchmark in Table 2 includes a set of aforemen-
tioned morphological operators on natural gray-scale pho-
tos 1000×1000 px. It includes an elementary 3× 3 dilation,
large opening and opening by reconstruction, alternating se-
quential filter, pattern spectrum and pattern spectrum by re-
construction. Apart from the 3 × 3 dilation, the common
property of all these operators is the large number of op-
erations, which is even undetermined for the reconstruction,
and therefore, a high cost.

The experimental results show that the proposed MCPU
architecture delivers performance by orders of magnitude
superior to that of the Sabre platform, and even comparable
with a desktop PC, for all high-cost operations, i.e., all in
Table 2 but the 3× 3 dilation. MCPU outperforms the other
platforms (or is at least equivalent) whereever a high num-
ber of operators are sequentially applied to the image. Such
a significant speed-up is allowed by possibility to thoroughly
exploit the inter-operator parallelism via the pipelined com-
putation. This is especially true for the opening and pattern
spectrum by reconstruction whenm = 16 geodesic dilations
are computed at the same time. The speed-up becomes less
significant for simple operators with small SEs, the perfor-
mance for 3× 3 dilation is worse than that of Smil at Sabre.
This is due to a much higher clock of the ARM and the Xeon
processors (1GHz and 2.7 Ghz, respectively). However, the



8

Table 2 Performance results of selected operators. Image is natural photo 1000×1000 px, time results are in milliseconds (unless seconds are
specified).

Operator Shape of SE Size of SE or λ MCPU OpenCV at Sabre Smil at Sabre OpenCV at Xeon
Dilation Rectangle 3×3 21.9 32.7 8.4 0.58
Opening Rectangle 151×151 24.3 2450 1083 38.6
Opening Octagon 151×151 41.9 246 s 2453 2301

Opening by recon. Rectangle 151×151 544 47.6 s 22.1 s / 2110? 1940
Opening by recon. Octagon 151×151 512 289 s 21.1 s 4356

ASF Rectangle λ = 11 64.2 4530 1987 57.1
ASF Octagon λ = 11 83.3 77 s 3872 814

Pattern spectrum PS Rectangle λ = 11 62.3 2570 1098 53.8
Pattern spectrum PS Octagon λ = 11 62.7 21.2 s 1782 249

PS by recon. Rectangle λ = 11 2530 190 s 85.3 s / 18.2 s? 8920
PS by recon. Octagon λ = 11 2410 201 s 81.5 s 8751

note ?: The second result is obtained by an algorithm based on hierarchy queues.

majority of applications of mathematical morphology need
a long sequence of operators that take advantage of the pro-
posed parallelism.

7 Conclusions

This paper proposes a novel programmable morphologi-
cal coprocessor for embedded devices based on FPGA de-
vices. We have integrated previously published efficient di-
lation/erosion processing units and geodesic units into a Mi-
croBlaze platform, which provides DDR memory storage
and Ethernet connectivity, and thus created a very power-
ful coprocessor that supports a wide range of operators from
a simple dilation to the pattern spectrum by reconstruction.

The coprocessor was experimentally evaluated at a Vir-
tex5 development kit and compared to the quad-core ARM9
Sabre platform by Freescale running OpenCV and Smil li-
braries. The performance results for various compound oper-
ators (except the 3×3 dilation) shows a significant speed-up
of at least one order of magnitude. The results of MCPU do
even compare to that of a Xeon desktop workstation.

The future work will be focused on development of a
compiler for MCPU that will automatically map a given ap-
plication to the architecture. The current interface provides
a user with a high-level programming interface. In the fu-
ture, this compiler shall optimize the execution of concur-
rent operators, branching and simultaneous co-execution of
an application on MCPU and the client.
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7. O. Déforges, N. Normand, and M. Babel. Fast recursive grayscale
morphology operators: from the algorithm to the pipeline architec-
ture. Journal of Real-Time Image Processing, pages 1–10, 2010.
10.1007/s11554-010-0171-8.
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